期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于混合分块DMICA-PCA的全流程过程监控方法 被引量:10
1
作者 江伟 王振雷 王昕 《化工学报》 EI CAS CSCD 北大核心 2017年第2期759-766,共8页
分块策略被广泛运用于全流程过程监控领域,以解决全流程过程变量关系复杂性较高的问题,但传统的分块策略与子块建模方法都未考虑过程的动态性问题,并且传统的分块策略都片面依赖于过程知识或过程数据信息,影响了过程监控的效果,为此提... 分块策略被广泛运用于全流程过程监控领域,以解决全流程过程变量关系复杂性较高的问题,但传统的分块策略与子块建模方法都未考虑过程的动态性问题,并且传统的分块策略都片面依赖于过程知识或过程数据信息,影响了过程监控的效果,为此提出了一种基于混合分块DMICA-PCA的过程监控方法。在分析过程的动态性后,先利用已知的部分过程知识进行变量的初步分块,接着利用各分块变量之间改进的广义Dice’s系数(MGDC)进行进一步的分块。然后采用DMICA-PCA方法对每个子块进行建模得到子块的统计量,并通过加权方法得到总的联合指标进行故障检测。同时对每个子块采用改进的故障诊断方法,提高了诊断效果。最后将该方法应用在TE过程的过程监控中,证明了该方法的有效性。 展开更多
关键词 主元分析 过程控制 过程系统 混合分块 全流程 改进的广义Dice’s系数
下载PDF
直觉模糊多核聚类算法及其在乙烯原料属性聚类中的应用
2
作者 崔兴华 杜文莉 +2 位作者 赵亮 李江利 池亮 《化工学报》 EI CAS CSCD 北大核心 2017年第2期739-745,共7页
随着乙烯裂解原料种类的日益增多,原料分析仪价格昂贵,因此根据乙烯裂解原料属性进行在线聚类,对实现乙烯收率建模,优化乙烯产率、节能减耗具有重要现实意义。为了提高原料在聚类的准确性,提出了一种基于直觉模糊集理论的核聚类算法。... 随着乙烯裂解原料种类的日益增多,原料分析仪价格昂贵,因此根据乙烯裂解原料属性进行在线聚类,对实现乙烯收率建模,优化乙烯产率、节能减耗具有重要现实意义。为了提高原料在聚类的准确性,提出了一种基于直觉模糊集理论的核聚类算法。即在定义直觉模糊集隶属度时通过引入犹豫度来表征数据的不确定信息,同时利用直觉模糊熵对多核聚类算法的损失函数重新定义,使类簇中的数据点最优化;进一步地,使用随机森林对裂解原料属性进行特征选择,依据对乙烯产率的贡献度选取聚类的主要特征属性。最后根据实际工业裂解的石脑油数据验证了所述算法的有效性。 展开更多
关键词 算法 优化 直觉模糊 乙烯裂解
下载PDF
基于自适应采样算法的芳烃异构化代理模型 被引量:2
3
作者 谢雨珩 李智 +1 位作者 杨明磊 杜文莉 《化工学报》 EI CAS CSCD 北大核心 2020年第2期688-697,F0002,共11页
异构化是芳烃生产中的重要环节,提高异构化环节的建模和优化效率对工业生产有着重要意义。但是,直接使用机理模型的优化过程耗时较长,优化效率低。代理模型可以有效地对机理模型进行近似,而代理模型采样方法对模型精度有很大影响。提出... 异构化是芳烃生产中的重要环节,提高异构化环节的建模和优化效率对工业生产有着重要意义。但是,直接使用机理模型的优化过程耗时较长,优化效率低。代理模型可以有效地对机理模型进行近似,而代理模型采样方法对模型精度有很大影响。提出了一种新的基于稀疏度和最邻近期望的自适应采样算法,该方法可以平衡全局搜索和局部搜索,通过求解优化问题找到反映函数关键信息的新采样点,再加入原始样本集中,使得代理模型精度不断提高。多个测试函数结果表明,相比于其他自适应采样算法,该算法能有效提升代理模型精度和建模效率。该算法在芳烃异构化环节代理模型中也得到了有效验证,与本文中其他算法对比,该算法模型误差减少5%以上,建模时间缩短30%以上。 展开更多
关键词 模型 算法 反应 稀疏度 芳烃异构化 自适应采样
下载PDF
基于双层DAE-SOM的多指标工况识别方法 被引量:2
4
作者 李梦遥 杜文莉 钱锋 《化工学报》 EI CAS CSCD 北大核心 2018年第2期769-778,共10页
由于工业过程常常受到扰动等因素影响导致工作点发生偏移,所以及时准确地掌握过程运行状况的变化显得尤为重要。目前的工况识别主要针对是否发生故障或者发生何种故障,很少有文献能够从安全、经济、故障等多方面考虑过程工况。针对这一... 由于工业过程常常受到扰动等因素影响导致工作点发生偏移,所以及时准确地掌握过程运行状况的变化显得尤为重要。目前的工况识别主要针对是否发生故障或者发生何种故障,很少有文献能够从安全、经济、故障等多方面考虑过程工况。针对这一问题,结合过程的历史数据和相关操作要求,获取不同安全状况、经济状况等的评判标准。基于这些判断准则,使用双层降噪自编码(denoising autoencoder,DAE)方法提取数据特征,并用自组织映射神经网络(self-organizing map,SOM)方法对特征提取后的数据聚类,将过程的状况可视化到二维映射图上。在该方法中,DAE方法可以降低工业过程扰动对数据的影响,而SOM方法能够更好地实现过程性能的可视化监控。通过实验可以发现,基于DAE-SOM的双层映射方法可以很好地判断系统的安全级别以及发生的故障类型、当前系统的经济效益状况等。 展开更多
关键词 降噪自编码 自组织映射神经网络 性能指标 可视化 双层映射 工况识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部