[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advan...[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advanced Liquid Processing System(ALPS)and Kurion have faced challenges in limiting concentration and achieving safety criteria.Studies suggest potential long-term impacts on benthic organisms and seafood networks due to radioactive elements like Cs and Sr from the discharged radioactive wastewater,which may hinder post-disaster recovery and provoke economic losses in the fishing industry both domestically and internationally.A series of studies indicate that there are issues of Cs and Sr pollution migration in soil and water conservation in Fukushima.[Methods]To provide feasible solutions,the main article includes five nuclear wastewater treatment technologies,and soil and water conservation measures for different media(water and soil)were evaluated through reviewing the previous fifteen years'articles.To provide feasible solutions,the main articles,the phytoextraction technologies in Cs and Sr treatment within different land use areas were wildly analyzed(Camellia japonica,Arabidopsis halleri and other local species).[Results]1)A 99.9%removal rate for Cs^(+)and 99.5%for Sr^(2+)was achieved by the KFe[Fe(CN)_(6)]and BaSO_(4)co-precipitation method.2)For membrane filtration,Sr^(2+)and Cs^(+)were removed using metal-organic framework(MOF/graphene oxide)and ion exchange techniques using inorganic materials like titanosilicates.The absorption efficiency of membrane filtration for Sr^(2+)and Cs^(+)was at least 92%and 94%,respectively.The study analyzed soil and water conservation technologies in different land uses,river basins and catchments.3)The underground water treatment mainly were completed via the membrance technologies like reverse osmosis and Permeable Reactive Barriers(PRB)technologies.The ^(90) Sr concentration decreased 77%-91%compared to the initial concentration by PRB technology.These diverse methods offered effective strategies for radioactive wastewater treatment,especially the co-precipitation method may be feasible remediation measures to ensure ecological safety surrounding nuclear power utilizing areas.Soil and water conservation measures for soil pollution treatment mainly focused on the use of stabilizers to hinder the migration of Cs and Sr in the soil and the effects of wind erosion such as interpolyelectrolyte complexes.[Conclusions]We evaluated the pollution of Cs and Sr in the Fukushima nuclear radiation soil and water to provide solutions for the treatment of nuclear wastewater and to prevent radionuclide pollutants from migrating into the soil and water.展开更多
Guanting Reservoir(GR) is one of the most important water sources for Beijing and neighboring regions.Due to water pollution,it was withdrawn from the system to supply Beijing drinking water;however,after a thorough...Guanting Reservoir(GR) is one of the most important water sources for Beijing and neighboring regions.Due to water pollution,it was withdrawn from the system to supply Beijing drinking water;however,after a thorough treatment process,GR was made a reserve water source since 2007.To develop a comprehensive and quantitative analysis of water yield and purification services in the GR watershed,this study selected two time periods:the period when GR was withdrawn from the system supplying local drinking water and the period that it has been designated a reserve water source.The In VEST model was used to evaluate the quantities of water yields,and total nitrogen and total phosphorus outputs from 1995 to 2010 Additionally,the spatiotemporal variations of water yield services and water quality purification services in the GR watershed were analyzed.The results showed that water yield services in the GR watershed first weakened and then became stronger,but weakened overall during the years 1995 to 2010.Water yield capacity in the basin decreased from 1.89×10^9 m3 in 1995 to 1.43×10^9 m3 in 2010(a drop of 24.0% in total).Water quality purification services also showed the same tendency.Total nitrogen output decreased from 4028.7 t in 1995 to 3611.4 t in 2010,while total phosphorus decreased from 379.7 t in 1995 to 354.0 t in 2010.Nitrogen and phosphorus purification services were enhanced by 10.4% and 6.8%,respectively.Changes in the climate and land use were the main factors which lead to the changes in the water yield service in the GR watershed.Policies intended to protect water resource have matched the varying trends of water quality purification services during different periods.On one hand,the research results provide a foundation to identify key fields for eco-compensation in the Guanting Reservoir basin.On another hand,the ecosystem service value will increase on the basis of eco-compensation criteria through setting the scenarios of returning farmland to forest and ecological protection.This method directly reflects increases in ecosystem service values that have occurred since measures to protect the ecological environment have been implemented.This method is more persuasive and feasible than using eco-compensation criteria based on regional ecosystem service values determined by land use/coverage type.It can provide a new way to assess eco-compensation in the Guanting Reservoir basin and other regions.展开更多
In the new era of the rapid development of economic globalization and the community of human destiny,the implementation of the “One Belt and One Road”(OBOR) construction model is designed to coordinate environmental...In the new era of the rapid development of economic globalization and the community of human destiny,the implementation of the “One Belt and One Road”(OBOR) construction model is designed to coordinate environmental protection and economic development. Most of the countries along the Silk Road in the 21st century are developing countries, and the majority of them are facing the same ecological and developmental difficulties as China. In this paper, under the background of the “OBOR” strategy and on the basis of the distribution of global climate types, we selected Central Asia and Northwest China, which have temperate continental climates, as the research objects. We sorted out and summarized the main ecological problems faced by Western China and Central Asia during the development of the “Belt and Road” initiative. At the same time, in combination with the major ecological governance projects implemented in recent years, we proposed key ecological governance technologies that have a certain degree of scalability, such as key technologies for water resource utilization and protection, sand prevention and control, and saline-alkali land governance. The aim was to offer the experiences and a reference for providing technological models for the “one belt along the road” region and the country to build an effective ecological governance system. Two suggestions are then proposed for improving the feasibility and rationality of ecological governance technology in the construction of the “One Belt, One Road”. 1) With the implementation of the strategy of “OBOR” construction, the ecological threats the OBOR countries are facing cannot be ignored. Every country needs to jointly act to build an “OBOR” ecological civilization. 2) The participants must pay attention to the spatial heterogeneity and temporal dynamics of ecological carrying capacity, and provide data reference and support for the reasonable allocation of ecological governance technology.展开更多
基金Xiong′an New Area Science and Technology Innovation Project(2022XACX1000)。
文摘[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advanced Liquid Processing System(ALPS)and Kurion have faced challenges in limiting concentration and achieving safety criteria.Studies suggest potential long-term impacts on benthic organisms and seafood networks due to radioactive elements like Cs and Sr from the discharged radioactive wastewater,which may hinder post-disaster recovery and provoke economic losses in the fishing industry both domestically and internationally.A series of studies indicate that there are issues of Cs and Sr pollution migration in soil and water conservation in Fukushima.[Methods]To provide feasible solutions,the main article includes five nuclear wastewater treatment technologies,and soil and water conservation measures for different media(water and soil)were evaluated through reviewing the previous fifteen years'articles.To provide feasible solutions,the main articles,the phytoextraction technologies in Cs and Sr treatment within different land use areas were wildly analyzed(Camellia japonica,Arabidopsis halleri and other local species).[Results]1)A 99.9%removal rate for Cs^(+)and 99.5%for Sr^(2+)was achieved by the KFe[Fe(CN)_(6)]and BaSO_(4)co-precipitation method.2)For membrane filtration,Sr^(2+)and Cs^(+)were removed using metal-organic framework(MOF/graphene oxide)and ion exchange techniques using inorganic materials like titanosilicates.The absorption efficiency of membrane filtration for Sr^(2+)and Cs^(+)was at least 92%and 94%,respectively.The study analyzed soil and water conservation technologies in different land uses,river basins and catchments.3)The underground water treatment mainly were completed via the membrance technologies like reverse osmosis and Permeable Reactive Barriers(PRB)technologies.The ^(90) Sr concentration decreased 77%-91%compared to the initial concentration by PRB technology.These diverse methods offered effective strategies for radioactive wastewater treatment,especially the co-precipitation method may be feasible remediation measures to ensure ecological safety surrounding nuclear power utilizing areas.Soil and water conservation measures for soil pollution treatment mainly focused on the use of stabilizers to hinder the migration of Cs and Sr in the soil and the effects of wind erosion such as interpolyelectrolyte complexes.[Conclusions]We evaluated the pollution of Cs and Sr in the Fukushima nuclear radiation soil and water to provide solutions for the treatment of nuclear wastewater and to prevent radionuclide pollutants from migrating into the soil and water.
基金National Natural Science Foundation of China(51379084)National Key R&D Plan(2016YFC0503405)
文摘Guanting Reservoir(GR) is one of the most important water sources for Beijing and neighboring regions.Due to water pollution,it was withdrawn from the system to supply Beijing drinking water;however,after a thorough treatment process,GR was made a reserve water source since 2007.To develop a comprehensive and quantitative analysis of water yield and purification services in the GR watershed,this study selected two time periods:the period when GR was withdrawn from the system supplying local drinking water and the period that it has been designated a reserve water source.The In VEST model was used to evaluate the quantities of water yields,and total nitrogen and total phosphorus outputs from 1995 to 2010 Additionally,the spatiotemporal variations of water yield services and water quality purification services in the GR watershed were analyzed.The results showed that water yield services in the GR watershed first weakened and then became stronger,but weakened overall during the years 1995 to 2010.Water yield capacity in the basin decreased from 1.89×10^9 m3 in 1995 to 1.43×10^9 m3 in 2010(a drop of 24.0% in total).Water quality purification services also showed the same tendency.Total nitrogen output decreased from 4028.7 t in 1995 to 3611.4 t in 2010,while total phosphorus decreased from 379.7 t in 1995 to 354.0 t in 2010.Nitrogen and phosphorus purification services were enhanced by 10.4% and 6.8%,respectively.Changes in the climate and land use were the main factors which lead to the changes in the water yield service in the GR watershed.Policies intended to protect water resource have matched the varying trends of water quality purification services during different periods.On one hand,the research results provide a foundation to identify key fields for eco-compensation in the Guanting Reservoir basin.On another hand,the ecosystem service value will increase on the basis of eco-compensation criteria through setting the scenarios of returning farmland to forest and ecological protection.This method directly reflects increases in ecosystem service values that have occurred since measures to protect the ecological environment have been implemented.This method is more persuasive and feasible than using eco-compensation criteria based on regional ecosystem service values determined by land use/coverage type.It can provide a new way to assess eco-compensation in the Guanting Reservoir basin and other regions.
基金The Youth Talent Growth Project of Guizhou Provincial Department of Education (Qian Jiao He KY [2022] No. 202)The School-level Project of Guizhou University of Finance and Economics in 2022 (2022KYZD02)。
文摘In the new era of the rapid development of economic globalization and the community of human destiny,the implementation of the “One Belt and One Road”(OBOR) construction model is designed to coordinate environmental protection and economic development. Most of the countries along the Silk Road in the 21st century are developing countries, and the majority of them are facing the same ecological and developmental difficulties as China. In this paper, under the background of the “OBOR” strategy and on the basis of the distribution of global climate types, we selected Central Asia and Northwest China, which have temperate continental climates, as the research objects. We sorted out and summarized the main ecological problems faced by Western China and Central Asia during the development of the “Belt and Road” initiative. At the same time, in combination with the major ecological governance projects implemented in recent years, we proposed key ecological governance technologies that have a certain degree of scalability, such as key technologies for water resource utilization and protection, sand prevention and control, and saline-alkali land governance. The aim was to offer the experiences and a reference for providing technological models for the “one belt along the road” region and the country to build an effective ecological governance system. Two suggestions are then proposed for improving the feasibility and rationality of ecological governance technology in the construction of the “One Belt, One Road”. 1) With the implementation of the strategy of “OBOR” construction, the ecological threats the OBOR countries are facing cannot be ignored. Every country needs to jointly act to build an “OBOR” ecological civilization. 2) The participants must pay attention to the spatial heterogeneity and temporal dynamics of ecological carrying capacity, and provide data reference and support for the reasonable allocation of ecological governance technology.