期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多尺度通道注意力机制的行为识别方法
1
作者 许晨炀 范非易 +1 位作者 柯冠舟 沈建飞 《电子测量技术》 北大核心 2023年第21期114-122,共9页
针对可穿戴行为识别任务中小尺度的感受野难以提取长序列关联,大尺度感受野会导致特征压缩降低网络对信号特征的分辨率的问题。提出了一种基于多尺度通道注意力机制的行为识别方法。首先,从多个感受野提取时间特征和传感器通道特征,在... 针对可穿戴行为识别任务中小尺度的感受野难以提取长序列关联,大尺度感受野会导致特征压缩降低网络对信号特征的分辨率的问题。提出了一种基于多尺度通道注意力机制的行为识别方法。首先,从多个感受野提取时间特征和传感器通道特征,在保证信号具有低语义特征的同时提取信号的高语义特征;其次,在多尺度特征图之间建立跨通道关联,保证低语义特征和高语义特征之间的交互。多尺度通道注意力机制能够充分融合多尺度特征和多个特征图的关联信息,增强对微弱信号和剧烈信号的识别能力。在UCIHAR、DSADS、PAMAP2和UniMib-SHAR数据集上进行了对比实验,结果表明MSCA-HAR方法相比目前的主流方法在4个数据集上的分类准确率分别提升0.43%,0.75%,2.90%和0.83%。 展开更多
关键词 可穿戴设备 行为识别(HAR) 多尺度通道注意力 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部