期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于BP神经网络的铁路大宗货物运价风险预警判定方法 被引量:6
1
作者 曾进 郭少媛 +2 位作者 戚芳榕 潘红芹 董宝田 《铁路计算机应用》 2020年第7期25-29,共5页
为获取较大的市场占有率和较好的利润增长水平,铁路货运公司需要实时掌握铁路货物运价在货运市场中的竞争力,综合考虑社会、企业自身和货主等因素,基于BP神经网络算法,进行铁路货运价格风险预警判定方法研究,并建立运价风险预警模型。... 为获取较大的市场占有率和较好的利润增长水平,铁路货运公司需要实时掌握铁路货物运价在货运市场中的竞争力,综合考虑社会、企业自身和货主等因素,基于BP神经网络算法,进行铁路货运价格风险预警判定方法研究,并建立运价风险预警模型。以某铁路局集团有限公司大宗货物运输中的煤炭运输为例,选取2015-2017年相关数据,训练BP神经网络模型,得到铁路煤炭运价的风险预警结果。与实际数据对比,拟合程度较高,因此可使用该方法对当期的运价风险程度进行合理预测,同时也对相关铁路部门的运价政策制定与调整起到辅助决策作用。 展开更多
关键词 铁路运价风险 风险预警 BP神经网络
下载PDF
Probabilistic interval prediction of metro-to-bus transfer passenger flow in the trip chain 被引量:2
2
作者 Shen Jin Zhao Jiandong +2 位作者 Gao Yuan Feng Yingzi Jia Bin 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期408-417,共10页
To accurately analyze the fluctuation range of time-varying differences in metro-to-bus transfer passenger flows,the application of a probabilistic interval prediction model is proposed to predict transfer passenger f... To accurately analyze the fluctuation range of time-varying differences in metro-to-bus transfer passenger flows,the application of a probabilistic interval prediction model is proposed to predict transfer passenger flows.First,bus and metro data are processed and matched by association to construct the basis for public transport trip chain extraction.Second,a reasonable matching threshold method to discriminate the transfer relationship is used to extract the public transport trip chain,and the basic characteristics of the trip based on the trip chain are analyzed to obtain the metro-to-bus transfer passenger flow.Third,to address the problem of low accuracy of point prediction,the DeepAR model is proposed to conduct interval prediction,where the input is the interchange passenger flow,the output is the predicted median and interval of passenger flow,and the prediction scenarios are weekday,non-workday,and weekday morning and evening peaks.Fourth,to reduce the prediction error,a combined particle swarm optimization(PSO)-DeepAR model is constructed using the PSO to optimize the DeepAR model.Finally,data from the Beijing Xizhimen subway station are used for validation,and results show that the PSO-DeepAR model has high prediction accuracy,with a 90%confidence interval coverage of up to 93.6%. 展开更多
关键词 urban traffic probabilistic interval prediction deep learning metro-to-bus transfer passenger flow trip chain
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部