期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
自动监测装置用温室粉虱和蓟马成虫图像分割识别算法 被引量:28
1
作者 杨信廷 刘蒙蒙 +6 位作者 许建平 赵丽 魏书军 李文勇 陈梅香 陈明 李明 《农业工程学报》 EI CAS CSCD 北大核心 2018年第1期164-170,共7页
为了监测温室黄瓜作物虫害种类、数量变化情况以预测虫害发展趋势,该文以粉虱和蓟马为例,提出了一种基于Prewitt、Canny边缘检测算子分割和SVM(support vector machine)的温室粉虱和蓟马诱虫板的图像识别算法。该方法利用HSI(Hue-Satura... 为了监测温室黄瓜作物虫害种类、数量变化情况以预测虫害发展趋势,该文以粉虱和蓟马为例,提出了一种基于Prewitt、Canny边缘检测算子分割和SVM(support vector machine)的温室粉虱和蓟马诱虫板的图像识别算法。该方法利用HSI(Hue-Saturation-Intensity)颜色空间的I分量与L*a*b*颜色空间的b分量二值图像中害虫目标与背景的高对比性,再分别相应地利用Prewitt算子和Canny算子进行单头害虫边缘分割,再经过形态学处理,最后融合这两幅二值图像完成单头害虫区域的提取。然后提取害虫的5个形态特征(面积、相对面积、周长、复杂度、占空比)及9个颜色特征(Hue-Saturation-Value颜色空间、HSI颜色空间、L*a*b*颜色空间各分量的一阶矩),并对这14个特征参数进行归一化处理,将特征值作为SVM的输入向量,进行温室粉虱和蓟马的诱虫板图像识别。通过分析比较不同向量组合的BP(back propagation)与SVM的害虫识别率、4种不同SVM核函数的害虫识别率,发现颜色特征向量是粉虱和蓟马识别的主成分,且SVM的识别效果优于BP神经网络、线性核函数的SVM分类性能最好且稳定。结果表明:平均识别准确率达到了93.5%,粉虱和蓟马成虫的识别率分别是96.0%和91.0%,能够实现温室害虫的诱虫板图像识别。该研究可以为虫害的监测与预警提供支持,为及时采取正确的防治措施提供重要的理论依据。 展开更多
关键词 图像处理、图像分割 算法 边缘检测 支持向量机 颜色空间 虫害监测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部