期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
点云算法在医学领域的研究进展 被引量:8
1
作者 李美佳 于泽宽 +8 位作者 刘晓 颜荣耀 于媛媛 王大明 陈涓 陆军 祁鹏 王俊杰 刘杰 《中国图象图形学报》 CSCD 北大核心 2020年第10期2013-2023,共11页
点云作为一种重要的3维数据,能够直观地模拟生物器官、组织等的3维结构,基于医学点云数据的分类、分割、配准、目标检测等任务可以辅助医生进行更为准确的诊断和治疗,在临床医学以及个性化医疗器械辅助设计与3D打印有着重要的应用价值... 点云作为一种重要的3维数据,能够直观地模拟生物器官、组织等的3维结构,基于医学点云数据的分类、分割、配准、目标检测等任务可以辅助医生进行更为准确的诊断和治疗,在临床医学以及个性化医疗器械辅助设计与3D打印有着重要的应用价值。随着深度学习的发展,越来越多的点云算法逐步由传统算法扩展到深度学习算法中。本文对点云算法在医学领域的研究及其应用进行综述,旨在总结目前用于医学领域的点云方法,包括医学点云的特点、获取途径以及数据转换方法;医学点云分割中的传统算法和深度学习算法;以及医学点云的配准任务定义、意义,以及基于有/无特征的配准方法。总结了医学点云在临床应用中仍存在的限制和挑战:1)医学图像重建的人体器官点云分布稀疏且包含噪音、误差;2)医学点云数据集标注困难、制作成本高,可用于训练深度学习模型的公开数据集非常稀少;3)前沿的点云处理算法大都基于自然场景点云数据集训练,这些算法在医学点云处理中的鲁棒性和泛化能力还有待验证。随着医学点云数据集质量和数量的提升,医学点云处理算法的研究将会吸引更多的研究者。 展开更多
关键词 点云 医学应用 深度学习 分割 配准
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部