期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
小攻角高超声速钝锥边界层内扰动演化的数值模拟
1
作者 涂国华 袁湘江 +1 位作者 陶建军 陆利蓬 《空气动力学学报》 EI CSCD 北大核心 2009年第5期536-541,共6页
首先从有限差分格式出发,给出了基本无振荡的高阶激波捕捉格式,然后,采用数值模拟方法对马赫数为6的2°攻角高超声速钝锥边界层的稳定性进行了研究。计算发现,由于攻角的存在,钝锥的稳定性特征与零攻角时有本质的差别,比如背风面的... 首先从有限差分格式出发,给出了基本无振荡的高阶激波捕捉格式,然后,采用数值模拟方法对马赫数为6的2°攻角高超声速钝锥边界层的稳定性进行了研究。计算发现,由于攻角的存在,钝锥的稳定性特征与零攻角时有本质的差别,比如背风面的扰动比迎风面增长更快,但扰动增长最慢的地方并不是迎风面,而是侧面的某个位置;又比如背风面主要是长波起作用,迎风面和侧面主要是短波起作用;斜模式不稳定在整个钝锥边界层中起最主要作用。 展开更多
关键词 攻角 钝锥 边界层稳定性 紧致格式 高阶格式
下载PDF
二维抛物化稳定性方程的特征分析 被引量:1
2
作者 涂国华 袁湘江 +1 位作者 查俊 陶建军 《航空学报》 EI CAS CSCD 北大核心 2009年第3期385-390,共6页
在对抛物化稳定性方程(PSE)的基本流场没有做任何近似假定的情况下,分析了PSE的特征性质。分析表明,当法向速度不为零时,PSE有一个非零主特征值,其余主特征值都为零。PSE的次特征值与扰动波的空间波数α有关,α的实部代表扰动波的波动情... 在对抛物化稳定性方程(PSE)的基本流场没有做任何近似假定的情况下,分析了PSE的特征性质。分析表明,当法向速度不为零时,PSE有一个非零主特征值,其余主特征值都为零。PSE的次特征值与扰动波的空间波数α有关,α的实部代表扰动波的波动情况,它可以直接导致复特征值出现;α的虚部表示扰动波的增长(衰减)情况,当它的绝对值超过一定范围时,也会在边界层内亚声速区的局部区域导致复特征值出现。增大求解PSE的空间推进步长,可以克服PSE的椭圆性。 展开更多
关键词 抛物化稳定性方程 特征值 次特征值 可压流 边界层
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部