文献[1l提出了分子分母皆为线性函数的多元有理逼近(Rational Approximation with Linear Numerator and Denominator,RALND),满意地求了非线性方程组的解和数学规划最优解,为了克服RALND的不足,使之更好地发挥作用,本文试图改进该逼近:...文献[1l提出了分子分母皆为线性函数的多元有理逼近(Rational Approximation with Linear Numerator and Denominator,RALND),满意地求了非线性方程组的解和数学规划最优解,为了克服RALND的不足,使之更好地发挥作用,本文试图改进该逼近:(1)提出了更合理地筛选有理逼近解的方法;(2)证明了该逼近的单调性;(3)对于原函数在当前点与前次迭代点连线方向上方向导数符号相反的情况,分别提出了迭代求有理逼近和构造在当前点与估算点连线方向上相应的方向导数符号相同的近似有理逼近的方法;(4)提出了一个非单调的有理逼近函数;(5)通过数值计算验证了本文提出的有理逼近是有效和可行的.展开更多
文摘文献[1l提出了分子分母皆为线性函数的多元有理逼近(Rational Approximation with Linear Numerator and Denominator,RALND),满意地求了非线性方程组的解和数学规划最优解,为了克服RALND的不足,使之更好地发挥作用,本文试图改进该逼近:(1)提出了更合理地筛选有理逼近解的方法;(2)证明了该逼近的单调性;(3)对于原函数在当前点与前次迭代点连线方向上方向导数符号相反的情况,分别提出了迭代求有理逼近和构造在当前点与估算点连线方向上相应的方向导数符号相同的近似有理逼近的方法;(4)提出了一个非单调的有理逼近函数;(5)通过数值计算验证了本文提出的有理逼近是有效和可行的.