设X_1,X_2,…,X_n是i.i.d.,其共同分布是Weibull分布W(x)=1-exp(-λχ~β),其中λ>0是刻度参数,β>0是形状参数。如何估计形状参数在寿命分析中有重要地位,极大似然估计是众所周知的,方开泰给出了利用矩性质的估计。本文利用指数...设X_1,X_2,…,X_n是i.i.d.,其共同分布是Weibull分布W(x)=1-exp(-λχ~β),其中λ>0是刻度参数,β>0是形状参数。如何估计形状参数在寿命分析中有重要地位,极大似然估计是众所周知的,方开泰给出了利用矩性质的估计。本文利用指数分布的矩性质给出了估计形状参数的新方法。令Y=X~β,则Y服从参数为λ的指数分布。众所周知,EY^2/(EY)~2=EX^(2β)/(EX~β)~2=2,在该式中用样本矩代替总体矩 (Sum from i=1 to n(X_i^(2β)))/(Sum from i=1 to n(X_i~β))~2=2/n,(1) 若(?)_n是方程(1)的解,它可作为β的估计。这一思想可推广到一般情况。令g=g(x_1,x_2,…,x_k)是变量x_1,x_2,…,x_k的函数。展开更多
文摘设X_1,X_2,…,X_n是i.i.d.,其共同分布是Weibull分布W(x)=1-exp(-λχ~β),其中λ>0是刻度参数,β>0是形状参数。如何估计形状参数在寿命分析中有重要地位,极大似然估计是众所周知的,方开泰给出了利用矩性质的估计。本文利用指数分布的矩性质给出了估计形状参数的新方法。令Y=X~β,则Y服从参数为λ的指数分布。众所周知,EY^2/(EY)~2=EX^(2β)/(EX~β)~2=2,在该式中用样本矩代替总体矩 (Sum from i=1 to n(X_i^(2β)))/(Sum from i=1 to n(X_i~β))~2=2/n,(1) 若(?)_n是方程(1)的解,它可作为β的估计。这一思想可推广到一般情况。令g=g(x_1,x_2,…,x_k)是变量x_1,x_2,…,x_k的函数。