针对一台固定式天然气发动机的排气能量变化规律,设计了带回热器的有机朗肯循环排气余热回收系统。基于热力学第一定律和第二定律,对固定式天然气发动机排气余热回收系统性能指标进行了理论计算和分析,进而构建了固定式天然气发动机-带...针对一台固定式天然气发动机的排气能量变化规律,设计了带回热器的有机朗肯循环排气余热回收系统。基于热力学第一定律和第二定律,对固定式天然气发动机排气余热回收系统性能指标进行了理论计算和分析,进而构建了固定式天然气发动机-带回热器有机朗肯循环联合系统,并采用发电效率和有效燃料消耗率评价联合系统的性能。研究结果表明:当蒸发压力为3.5 MPa,发动机运行在额定工况点时,带回热器有机朗肯循环系统最大净输出功率和热效率分别为62.7 k W和12.5%;与固定式天然气发动机相比,联合系统发电效率最大可提高6.0%,有效燃料消耗率最大可降低5%。展开更多
文摘针对一台固定式天然气发动机的排气能量变化规律,设计了带回热器的有机朗肯循环排气余热回收系统。基于热力学第一定律和第二定律,对固定式天然气发动机排气余热回收系统性能指标进行了理论计算和分析,进而构建了固定式天然气发动机-带回热器有机朗肯循环联合系统,并采用发电效率和有效燃料消耗率评价联合系统的性能。研究结果表明:当蒸发压力为3.5 MPa,发动机运行在额定工况点时,带回热器有机朗肯循环系统最大净输出功率和热效率分别为62.7 k W和12.5%;与固定式天然气发动机相比,联合系统发电效率最大可提高6.0%,有效燃料消耗率最大可降低5%。