本研究旨在对轻骨料混凝土在动态受压条件下的性能进行数值模拟分析。基于基面力元法对轻骨料混凝土的细观力学性能进行分析,考虑了材料的非线性行为和加载应变率条件。研究结果表明,随着加载应变率的增加,轻骨料混凝土试件的材料非线...本研究旨在对轻骨料混凝土在动态受压条件下的性能进行数值模拟分析。基于基面力元法对轻骨料混凝土的细观力学性能进行分析,考虑了材料的非线性行为和加载应变率条件。研究结果表明,随着加载应变率的增加,轻骨料混凝土试件的材料非线性逐渐减小,同时轴向抗压强度略有提高。此外,分析了不同参数对混凝土性能的影响,为优化设计提供了有力的参考。本研究的方法为轻骨料混凝土在动态荷载下的工程应用提供了一种有效的分析手段,在轻骨料混凝土工程应用的数值仿真模拟分析中具有广阔的应用前景。This study aims to perform a numerical simulation analysis of the performance of lightweight aggregate concrete under dynamic compression conditions. The micro-mechanical properties of lightweight aggregate concrete are analyzed using the discrete element method, taking into account the nonlinear behavior of the material and the loading strain rate conditions. The results indicate that as the loading strain rate increases, the material nonlinearity of lightweight aggregate concrete specimens gradually decreases, while the axial compressive strength slightly improves. Additionally, the impact of different parameters on the performance of the concrete is analyzed, providing a strong reference for optimized design. The methodology of this study offers an effective analytical tool for the engineering application of lightweight aggregate concrete under dynamic loads, and it holds broad application prospects in the numerical simulation analysis of engineering applications of lightweight aggregate concrete.展开更多
文摘本研究旨在对轻骨料混凝土在动态受压条件下的性能进行数值模拟分析。基于基面力元法对轻骨料混凝土的细观力学性能进行分析,考虑了材料的非线性行为和加载应变率条件。研究结果表明,随着加载应变率的增加,轻骨料混凝土试件的材料非线性逐渐减小,同时轴向抗压强度略有提高。此外,分析了不同参数对混凝土性能的影响,为优化设计提供了有力的参考。本研究的方法为轻骨料混凝土在动态荷载下的工程应用提供了一种有效的分析手段,在轻骨料混凝土工程应用的数值仿真模拟分析中具有广阔的应用前景。This study aims to perform a numerical simulation analysis of the performance of lightweight aggregate concrete under dynamic compression conditions. The micro-mechanical properties of lightweight aggregate concrete are analyzed using the discrete element method, taking into account the nonlinear behavior of the material and the loading strain rate conditions. The results indicate that as the loading strain rate increases, the material nonlinearity of lightweight aggregate concrete specimens gradually decreases, while the axial compressive strength slightly improves. Additionally, the impact of different parameters on the performance of the concrete is analyzed, providing a strong reference for optimized design. The methodology of this study offers an effective analytical tool for the engineering application of lightweight aggregate concrete under dynamic loads, and it holds broad application prospects in the numerical simulation analysis of engineering applications of lightweight aggregate concrete.