采用热原子层沉积(ALD)方法,在固定氧化锌与氧化铝沉积比例的情况下,研究了不同温度下在玻璃衬底上沉积的掺铝氧化锌薄膜性能的变化,特别是"ALD窗口"温度的影响。通过计算薄膜沉积速率,得到了薄膜沉积的"ALD窗口"...采用热原子层沉积(ALD)方法,在固定氧化锌与氧化铝沉积比例的情况下,研究了不同温度下在玻璃衬底上沉积的掺铝氧化锌薄膜性能的变化,特别是"ALD窗口"温度的影响。通过计算薄膜沉积速率,得到了薄膜沉积的"ALD窗口"温度范围为225~275℃,相应的沉积速率为0.214 nm/cycle。分析样品的表面形貌后发现,虽然反应的温度有所不同,但薄膜的微观结构均为密集堆积的纺缍体,它们的尺寸受到温度、晶体结构等因素的影响。结构分析表明,在"ALD窗口"温度范围内,所有沉积得到的样品均为(100)择优取向,并且结晶质量、晶粒尺寸以及(002)峰的相对强度均随着温度升高而增大。薄膜的光学透过率以及光学带隙没有随温度变化而表现出明显的变化,分别在80%(350~770 nm)和3.90 e V左右。薄膜的电导率和光学质量在"ALD窗口"内随温度增加而增长,直到300℃时达到最佳。展开更多
采用低温水热法在掺铝氧化锌(AZO)基底上,通过在溶解有乙酸锌(ZnAc_2)与六次甲基四胺(HMTA)的反应溶液中引入NH_4NO_3与In(NO_3)_3,制备出不同形貌和光学性能的ZnO纳米柱阵列。采用扫描电子显微镜、透射光谱、光致发光发射谱研究了NH_4N...采用低温水热法在掺铝氧化锌(AZO)基底上,通过在溶解有乙酸锌(ZnAc_2)与六次甲基四胺(HMTA)的反应溶液中引入NH_4NO_3与In(NO_3)_3,制备出不同形貌和光学性能的ZnO纳米柱阵列。采用扫描电子显微镜、透射光谱、光致发光发射谱研究了NH_4NO_3与In(NO_3)_3对ZnO纳米柱阵列的结构和光学性质的影响。结果表明:溶液中添加的In(NO_3)_3显著地降低了ZnO纳米柱的密度,增大了纳米柱之间的间距,从而能够作为太阳能电池的减反射层使用。通过控制NH_4NO_3与In(NO_3)_3在反应溶液中的添加比例,可以在3.35~3.62 e V范围内调控所制备的ZnO纳米柱的光学带隙宽度。展开更多
文摘采用热原子层沉积(ALD)方法,在固定氧化锌与氧化铝沉积比例的情况下,研究了不同温度下在玻璃衬底上沉积的掺铝氧化锌薄膜性能的变化,特别是"ALD窗口"温度的影响。通过计算薄膜沉积速率,得到了薄膜沉积的"ALD窗口"温度范围为225~275℃,相应的沉积速率为0.214 nm/cycle。分析样品的表面形貌后发现,虽然反应的温度有所不同,但薄膜的微观结构均为密集堆积的纺缍体,它们的尺寸受到温度、晶体结构等因素的影响。结构分析表明,在"ALD窗口"温度范围内,所有沉积得到的样品均为(100)择优取向,并且结晶质量、晶粒尺寸以及(002)峰的相对强度均随着温度升高而增大。薄膜的光学透过率以及光学带隙没有随温度变化而表现出明显的变化,分别在80%(350~770 nm)和3.90 e V左右。薄膜的电导率和光学质量在"ALD窗口"内随温度增加而增长,直到300℃时达到最佳。
文摘采用低温水热法在掺铝氧化锌(AZO)基底上,通过在溶解有乙酸锌(ZnAc_2)与六次甲基四胺(HMTA)的反应溶液中引入NH_4NO_3与In(NO_3)_3,制备出不同形貌和光学性能的ZnO纳米柱阵列。采用扫描电子显微镜、透射光谱、光致发光发射谱研究了NH_4NO_3与In(NO_3)_3对ZnO纳米柱阵列的结构和光学性质的影响。结果表明:溶液中添加的In(NO_3)_3显著地降低了ZnO纳米柱的密度,增大了纳米柱之间的间距,从而能够作为太阳能电池的减反射层使用。通过控制NH_4NO_3与In(NO_3)_3在反应溶液中的添加比例,可以在3.35~3.62 e V范围内调控所制备的ZnO纳米柱的光学带隙宽度。