Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron micros...Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),electrochemical test and contact angle test.It can be found that the as-selective laser melted(as-SLMed)Ti−6Al−4V alloys showβcolumnar microstructure in building direction and nearly circular checkerboard microstructure in scanning direction,while the wrought and wrought+HT samples exhibit equiaxed microstructure.The as-SLMed Ti−6Al−4V alloy exhibits better corrosion resistance than the wrought and wrought+HT samples due to hydrophobicity,high grain boundary density and uniform distribution of alloying elements in simulated artificial saliva at 37℃.展开更多
The aluminum matrix syntactic foam was fabricated by pressure infiltration technique,and the filling material is syntactic foam material with fly ash cenosphere as the main component and polyurethane foam as the binde...The aluminum matrix syntactic foam was fabricated by pressure infiltration technique,and the filling material is syntactic foam material with fly ash cenosphere as the main component and polyurethane foam as the binder.Split Hopkinson pressure bar(SHPB)dynamic compression and quasi-static tests were carried out to examine the compressive response of syntactic foam in this study.Then the dynamic constitutive model was established.Results show that the compressive stress-strain curve of syntactic aluminum foam is similar to that of other metallic foam materials:both kinds of aluminum matrix syntactic foams have strain rate effect,and the syntactic foam has higher compressive strength and energy absorption than the same density aluminum foams.However,due to the different sizes of cenospheres,the dynamic compression results of two kinds of syntactic foams are different,and the energy absorption effect of syntactic foam with small size under dynamic impact is the best.In the range of strain rate and density studied experimentally,the curves of constitutive model fit well with the curves of experimental data.展开更多
基金The authors are grateful for the financial supports from the National Key R&D Program of China(2017YFB1104100)the New Young Teachers Initiation Plan,China(18X100040027)+1 种基金the National Natural Science Foundation of China(51971142)the China Postdoctoral Science Foundation(19Z102060057).
文摘Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),electrochemical test and contact angle test.It can be found that the as-selective laser melted(as-SLMed)Ti−6Al−4V alloys showβcolumnar microstructure in building direction and nearly circular checkerboard microstructure in scanning direction,while the wrought and wrought+HT samples exhibit equiaxed microstructure.The as-SLMed Ti−6Al−4V alloy exhibits better corrosion resistance than the wrought and wrought+HT samples due to hydrophobicity,high grain boundary density and uniform distribution of alloying elements in simulated artificial saliva at 37℃.
基金National Natural Science Foundation of China(No.11602233)。
文摘The aluminum matrix syntactic foam was fabricated by pressure infiltration technique,and the filling material is syntactic foam material with fly ash cenosphere as the main component and polyurethane foam as the binder.Split Hopkinson pressure bar(SHPB)dynamic compression and quasi-static tests were carried out to examine the compressive response of syntactic foam in this study.Then the dynamic constitutive model was established.Results show that the compressive stress-strain curve of syntactic aluminum foam is similar to that of other metallic foam materials:both kinds of aluminum matrix syntactic foams have strain rate effect,and the syntactic foam has higher compressive strength and energy absorption than the same density aluminum foams.However,due to the different sizes of cenospheres,the dynamic compression results of two kinds of syntactic foams are different,and the energy absorption effect of syntactic foam with small size under dynamic impact is the best.In the range of strain rate and density studied experimentally,the curves of constitutive model fit well with the curves of experimental data.