The influences of process parameters on mechanical properties of AA6082in the hot forming and cold-die quenching(HFQ)process were analysed experimentally.Transmission electron microscopy was used to observe the precip...The influences of process parameters on mechanical properties of AA6082in the hot forming and cold-die quenching(HFQ)process were analysed experimentally.Transmission electron microscopy was used to observe the precipitate distribution and to thus clarify strengthening mechanism.A new model was established to describe the strengthening of AA6082by HFQ process in this novel forming technique.The material constants in the model were determined using a genetic algorithm tool.This strengthening model for AA6082can precisely describe the relationship between the strengths of formed workpieces and process parameters.The predicted results agree well with the experimental ones.The Pearson correlation coefficient,average absolute relative error,and root-mean-square error between the calculated and experimental hardness values are0.99402,2.0054%,and2.045,respectively.The model is further developed into an FE code ABAQUS via VUMAT to predict the mechanical property variation of a hot-stamped cup in various ageing conditions.展开更多
The hot deformation behavior,microstructure evolution and fracture characteristics of bimodal microstructured Ti-6Al-2Zr-1Mo-1V alloy were investigated by isothermal tensile tests.Results reveal that flow softening is...The hot deformation behavior,microstructure evolution and fracture characteristics of bimodal microstructured Ti-6Al-2Zr-1Mo-1V alloy were investigated by isothermal tensile tests.Results reveal that flow softening is caused by dynamic globularization of the bimodal microstructure,which also results in a relatively high stress exponent and thermal activation energy.The corresponding SEM,EBSD and TEM observations indicate that the dynamic globularization at750and800℃is accomplished by the formation ofα/αsub-grain boundary and penetration of theβphase.However,dynamic recrystallization(DRX)is the main globularization mechanism at850℃,which was proved by the generation of fine grains with a necklace-like character due to the transformation of low-angle boundaries(LABs)into high-angle boundaries(HABs).With an increase in the deformation temperature or a decrease in the strain rate,the fracture mechanism changes from microvoid coalescence to intergranular fracture.展开更多
The effects of laser power and scanning speed on the forming characteristic of scanning tracks,densification behaviours and surface roughness of pure nickel fabricated with selective laser melting(SLM)were studied.The...The effects of laser power and scanning speed on the forming characteristic of scanning tracks,densification behaviours and surface roughness of pure nickel fabricated with selective laser melting(SLM)were studied.The results indicate that the scanning tracks showed continuous,regular and flat surface with increasing laser power and decreasing scanning speed in a specific range,which could avoid the defects(like holes and balling structures)forming in SLM processing.The optimal process window was identified as the scanning speed of 900 mm/s and the laser power of 255−275 W by comparing the surface qualities and densification behaviours.With the suitable processing parameters,the relative density could achieve 99.16%,the tensile strength was(359.49±2.74)MPa,and the roughnesses of the top and side surfaces were(12.88±2.23)and(14.98±0.69)μm,respectively.展开更多
基金Project(P2014-15)supported by the State Key Laboratory of Materials Processing and Die and Mould Technology,Huazhong University of Science and Technology,ChinaProject(20120006110017)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China+1 种基金Project(2015M580977)supported by China Postdoctoral Science FoundationProject supported by Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,China
文摘The influences of process parameters on mechanical properties of AA6082in the hot forming and cold-die quenching(HFQ)process were analysed experimentally.Transmission electron microscopy was used to observe the precipitate distribution and to thus clarify strengthening mechanism.A new model was established to describe the strengthening of AA6082by HFQ process in this novel forming technique.The material constants in the model were determined using a genetic algorithm tool.This strengthening model for AA6082can precisely describe the relationship between the strengths of formed workpieces and process parameters.The predicted results agree well with the experimental ones.The Pearson correlation coefficient,average absolute relative error,and root-mean-square error between the calculated and experimental hardness values are0.99402,2.0054%,and2.045,respectively.The model is further developed into an FE code ABAQUS via VUMAT to predict the mechanical property variation of a hot-stamped cup in various ageing conditions.
基金Project (LQ18E050007) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject (20120006110017) supported by the Research Fund for the Doctoral Program of Higher Education,China
文摘The hot deformation behavior,microstructure evolution and fracture characteristics of bimodal microstructured Ti-6Al-2Zr-1Mo-1V alloy were investigated by isothermal tensile tests.Results reveal that flow softening is caused by dynamic globularization of the bimodal microstructure,which also results in a relatively high stress exponent and thermal activation energy.The corresponding SEM,EBSD and TEM observations indicate that the dynamic globularization at750and800℃is accomplished by the formation ofα/αsub-grain boundary and penetration of theβphase.However,dynamic recrystallization(DRX)is the main globularization mechanism at850℃,which was proved by the generation of fine grains with a necklace-like character due to the transformation of low-angle boundaries(LABs)into high-angle boundaries(HABs).With an increase in the deformation temperature or a decrease in the strain rate,the fracture mechanism changes from microvoid coalescence to intergranular fracture.
基金financially supported by the Scientific and Technological Innovation Foundation of Foshan,China (No.BK20BE011)the Fundamental Research Funds for the Central Universities,China (No.FRF-GF-20-10B)。
文摘The effects of laser power and scanning speed on the forming characteristic of scanning tracks,densification behaviours and surface roughness of pure nickel fabricated with selective laser melting(SLM)were studied.The results indicate that the scanning tracks showed continuous,regular and flat surface with increasing laser power and decreasing scanning speed in a specific range,which could avoid the defects(like holes and balling structures)forming in SLM processing.The optimal process window was identified as the scanning speed of 900 mm/s and the laser power of 255−275 W by comparing the surface qualities and densification behaviours.With the suitable processing parameters,the relative density could achieve 99.16%,the tensile strength was(359.49±2.74)MPa,and the roughnesses of the top and side surfaces were(12.88±2.23)and(14.98±0.69)μm,respectively.