TG-DTG and DTA determination indicated that ignition temperature of anthracite was lowered from 458℃ to 405℃ by addition of 10% catalyst Fe2O3.Based on the nature of anthracite ignition temperature,pyrolysis convers...TG-DTG and DTA determination indicated that ignition temperature of anthracite was lowered from 458℃ to 405℃ by addition of 10% catalyst Fe2O3.Based on the nature of anthracite ignition temperature,pyrolysis conversion and pyrolysis gas composition during the catalytic combustion were examined.The results showed that with Fe2O3 addition anthracite pyrolysis conversion was 3.0% at 405℃ and components with higher heating value increased in the pyrolysis gas.However,without Fe2O3 addition pyrolysis conversion was 1.8% at ignition temperature.It could be concluded that the heat from the homogeneous combustion of catalytic combustion was higher than that of non-catalytic combustion.TG-DTG indicated combustion conversion of 10 % at ignition.SEM images of chars indicated rough surface of char with plenty of small pores.BET of char from catalytic combustion was 170 m2·g-1 while BET of char from non-catalytic combustion was only 128 m2·g-1,which could be the main reason for lowering ignition temperature.The results from oxygen adsorption experiment showed increased oxygen content of coal with catalyst addition,which caused faster oxygen adsorption at a lower temperature and shortened the time to get required oxygen concentration and heat accumulation for ignition,thus the ignition temperature was lowered.展开更多
In order to examine the leaching rate of potassium chloride from the sintering dust by water,surface morphology and inner structure of the dust,especially the existing state of potassium chloride,were observed by scan...In order to examine the leaching rate of potassium chloride from the sintering dust by water,surface morphology and inner structure of the dust,especially the existing state of potassium chloride,were observed by scanning electron microscopy(SEM) and linear scanning technique via energy dispersive spectroscopy(EDS).The characterization shows that the sintering dusts are mostly porous composites or agglomerates of the fine dust particles with size less than 10 μm,and the potassium chloride and sodium chloride particles are partly covered by other water insoluble matters in the dust which consist of elements iron,calcium and etc.Exposure of potassium chloride in the agglomerated dust matrix of this kind suggests that the leaching can be simply perceived as the dissolution of water soluble matters in the dust.On-line monitor of specific electrical conductivity of the leaching system verifies the prediction that leaching kinetics of potassium chloride from the sintering dust fits dissolution model well.Leaching equilibrium can be reached within 5 min with potassium leaching ratio more than 95%.展开更多
文摘TG-DTG and DTA determination indicated that ignition temperature of anthracite was lowered from 458℃ to 405℃ by addition of 10% catalyst Fe2O3.Based on the nature of anthracite ignition temperature,pyrolysis conversion and pyrolysis gas composition during the catalytic combustion were examined.The results showed that with Fe2O3 addition anthracite pyrolysis conversion was 3.0% at 405℃ and components with higher heating value increased in the pyrolysis gas.However,without Fe2O3 addition pyrolysis conversion was 1.8% at ignition temperature.It could be concluded that the heat from the homogeneous combustion of catalytic combustion was higher than that of non-catalytic combustion.TG-DTG indicated combustion conversion of 10 % at ignition.SEM images of chars indicated rough surface of char with plenty of small pores.BET of char from catalytic combustion was 170 m2·g-1 while BET of char from non-catalytic combustion was only 128 m2·g-1,which could be the main reason for lowering ignition temperature.The results from oxygen adsorption experiment showed increased oxygen content of coal with catalyst addition,which caused faster oxygen adsorption at a lower temperature and shortened the time to get required oxygen concentration and heat accumulation for ignition,thus the ignition temperature was lowered.
基金Project (50974018) supported by the National Natural Science Foundation of China Project (108007) supported by the ScienceFoundation of Ministry of Education of China
文摘In order to examine the leaching rate of potassium chloride from the sintering dust by water,surface morphology and inner structure of the dust,especially the existing state of potassium chloride,were observed by scanning electron microscopy(SEM) and linear scanning technique via energy dispersive spectroscopy(EDS).The characterization shows that the sintering dusts are mostly porous composites or agglomerates of the fine dust particles with size less than 10 μm,and the potassium chloride and sodium chloride particles are partly covered by other water insoluble matters in the dust which consist of elements iron,calcium and etc.Exposure of potassium chloride in the agglomerated dust matrix of this kind suggests that the leaching can be simply perceived as the dissolution of water soluble matters in the dust.On-line monitor of specific electrical conductivity of the leaching system verifies the prediction that leaching kinetics of potassium chloride from the sintering dust fits dissolution model well.Leaching equilibrium can be reached within 5 min with potassium leaching ratio more than 95%.