期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合双阶段解码的实体关系联合抽取方法 被引量:3
1
作者 常思杰 林浩田 江静 《计算机工程与应用》 CSCD 北大核心 2023年第20期138-146,共9页
在现有的实体关系联合抽取任务中,级联解码的方法直接对三元组进行优化,解决了一部分重叠问题,但是在特定关系下解码的实体,造成实体识别不平衡问题。仅用集合预测的方法可以同时解码出实体和关系,虽然解决了三元组的顺序问题,但也导致... 在现有的实体关系联合抽取任务中,级联解码的方法直接对三元组进行优化,解决了一部分重叠问题,但是在特定关系下解码的实体,造成实体识别不平衡问题。仅用集合预测的方法可以同时解码出实体和关系,虽然解决了三元组的顺序问题,但也导致实体之间联系性不强、实体和关系之间交互性差的问题。为了进一步提高联合抽取模型的效果,提出一种融合双阶段解码的实体关系联合抽取模型,包括级联策略下的实体解码与集合预测网络阶段的关系解码。该模型分为三个部分:采用Bert进行编码,有效关注到了上下文的信息;采用级联解码的策略先对实体识别,得到不受关系限制的实体信息,充分识别实体;将融合了实体信息的表示嵌入集合预测网络解码出实体-关系三元组,加强实体与关系的联系。在公开数据集纽约时报(The New York Times,NYT)、WebNLG和ACE2005上的实验结果表明,所提出的模型基本优于基线模型,验证了该模型的有效性。 展开更多
关键词 实体关系联合抽取 重叠问题 级联解码 集合预测
下载PDF
基于3D卷积神经网络的脑肿瘤图像分割 被引量:4
2
作者 宫浩栋 王育坚 韩静园 《光学技术》 CAS CSCD 北大核心 2022年第4期472-477,共6页
三维脑胶质瘤磁共振成像肿瘤形状各异、边缘模糊,目前大多数基于2D卷积神经网络的分割方法不能很好的分割三维图像。为了能够准确分割出三维图像中的肿瘤部分,提出一种融合多尺度特征信息的3D卷积神经网络脑肿瘤图像分割方法。利用并行... 三维脑胶质瘤磁共振成像肿瘤形状各异、边缘模糊,目前大多数基于2D卷积神经网络的分割方法不能很好的分割三维图像。为了能够准确分割出三维图像中的肿瘤部分,提出一种融合多尺度特征信息的3D卷积神经网络脑肿瘤图像分割方法。利用并行的3D空洞卷积提取特征信息,将不同感受野的信息融合。将Dice损失和BCE损失结合,形成一种新的损失函数并配合恒等映射,进一步提高分割精度。在BraTs2020数据集上对模型进行验证,结果表明,该模型分割的全肿瘤区、核心区和增强区的Dice系数分别为89.1%、83.9%和82.6%。在LGG脑部肿瘤图像数据集上对模型进行验证,结果表明,Dice系数达到了93.3%。所提出的分割方法不仅能够精确的分割三维脑胶质瘤图像,而且同样适用于分割二维脑胶质瘤图像。 展开更多
关键词 脑胶质瘤 三维磁共振图像 图像分割 3D卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部