-
题名面向智能驾驶的行人多目标跟踪算法研究
被引量:1
- 1
-
-
作者
闫晨阳
刘宏哲
徐成
李学伟
-
机构
北京联合大学北京市信息服务工程重点实验室
北京联合大学机器人学院脑与认知智能北京实验室
-
出处
《计算机工程与应用》
CSCD
北大核心
2023年第15期206-213,共8页
-
基金
国家自然科学基金(62171042,62102033,61871039,61906017,61802019)
北京市科技重点项目(KZ202211417048)
北京联合大学学术研究项目(BPHR2020DZ02,ZB10202003,ZK40202101,ZK120202104)。
-
文摘
多目标跟踪(multi-object tracking,MOT)是智能驾驶场景中的一个研究热点,大多数现代MOT网络遵循“逐检测跟踪”范式,跟踪目标的轨迹关联是其中一个急需解决的热点问题。针对场景混乱以及意外的遮挡造成的对象重叠往往会导致遗漏检测,进而增加了数据关联的难度等问题,提出融合注意力机制和无锚框检测的智能驾驶多目标跟踪算法PDTNet。将金字塔分割注意力模块融入深层聚合网络,提高多尺度特征的表示能力;设计一个简单Re-identification模块,将由无锚框检测器获得的目标检测与已有的跟踪轨迹相结合进行多步匹配,实现强鲁棒性的多目标跟踪。实验结果表明,在MOT16、MOT17数据集和BUUISE数据集上验证了算法的有效性,提高了多目标跟踪的检测准确率、关联准确率以及跟踪总精度等,在智能驾驶多目标跟踪场景中有很大应用。
-
关键词
多目标跟踪
智能驾驶
注意力机制
深层聚合网络
-
Keywords
multi-object tracking
intelligent driving
attention mechanism
deep aggregation network
-
分类号
TP391.41
[自动化与计算机技术—计算机应用技术]
-