The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).Mg...The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent.展开更多
The effect of heat treatments on laser additive manufacturing(LAM)Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy(TC17)was studied aiming to optimize its microstructure and mechanical properties.The as-deposited sample exhibits...The effect of heat treatments on laser additive manufacturing(LAM)Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy(TC17)was studied aiming to optimize its microstructure and mechanical properties.The as-deposited sample exhibits features of a mixed priorβgrain structure consisting of equiaxed and columnar grains,intragranular ultra-fineαlaths and numerous continuous grain boundaryα(αGB).After being pre-annealed inα+βregion(840°C)and standard solution and aging treated,the continuousαGB becomes coarser and the precipitate free zone(PFZ)nearby theαGB transforms into a zone filled with ultra-fine secondaryα(αS)but no primaryα(αP).When pre-annealed in singleβregion(910°C),allαphases transform intoβphase and the alloying elements distribute uniformly near the grain boundary.DiscontinuousαGB and uniform mixture ofαP andαS near grain boundary form after subsequent solution and aging treatment.The two heat treatments can improve the tensile mechanical properties of LAM TC17to satisfy the aviation standard for TC17.展开更多
The thorough-thickness inhomogeneity of precipitate distribution and pitting corrosion behavior of 95 mm-thick 2297 Al-Li alloy rolled plate was investigated using scanning electron microscopy, transmission electron m...The thorough-thickness inhomogeneity of precipitate distribution and pitting corrosion behavior of 95 mm-thick 2297 Al-Li alloy rolled plate was investigated using scanning electron microscopy, transmission electron microscopy and electrochemistry method. Precipitate distribution and pit size were statistically analyzed to obtain quantitative information and corresponding correlation. The population density and the size fraction of precipitate on different sections in the thick plate are ranked from high to low in the following order: quarter-section(QS) > surface section(SS) > mid-section(MS). After 300 min potentiostatic polarization, the number and the total volume of pits are ranked from high to low as QS>SS>MS, indicating a higher pitting susceptibility of the plate in QS with more precipitates. The through-thickness inhomogeneity of pitting corrosion in 2297 Al-Li alloy thick plate is mainly ascribed to inhomogeneous precipitate distribution.展开更多
Single-layer and multilayer laser additive manufacturing(LAM)for TC11 alloy with different Nd additions was conducted and the effect of Nd addition on microstructure and properties was studied.With the addition of Nd,...Single-layer and multilayer laser additive manufacturing(LAM)for TC11 alloy with different Nd additions was conducted and the effect of Nd addition on microstructure and properties was studied.With the addition of Nd,the aspect ratio of melting pools of single-layer specimens increases and the columnar-to-equiaxed transition occurs.The originalβgrain size andαplate width of TC11−1.0Nd are significantly reduced compared with those of pure TC11 specimens.It is proposed that the evenly distributed fine Nd_(2)O_(3) precipitates of about 1.51μm are formed preferentially during rapid solidification of melting pool,and they serve as heterogeneous nucleation particles to refine the microstructure in the subsequent solidification and solid-state phase transformation.Due to the multiple effects of Nd on the microstructure,the ultimate tensile strength of TC11−1.0Nd increases,while the yield strength,ductility and microhardness decrease compared with those of pure TC11.展开更多
The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation...The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation directly.By contrast,the technique of dynamic load identification based on the dynamic model and the response information is a feasible access to obtain the dynamic load indirectly.Furthermore,there are multi-source uncertainties which cannot be neglected for complex systems in the load identification process,especially for aerospace vehicles.In this paper,recent developments in the dynamic load identification field for aerospace vehicles considering multi-source uncertainties are reviewed,including the deterministic dynamic load identification and uncertain dynamic load identification.The inversion methods with different principles of concentrated and distributed loads,and the quantification and propagation analysis for multi-source uncertainties are discussed.Eventually,several possibilities remaining to be explored are illustrated in brief.展开更多
The uniaxial tensile test of the 5A06-O aluminium−magnesium(Al−Mg)alloy sheet was performed in the temperature range of 20−300℃ to obtain the true stress−true strain curves at different temperatures and strain rates....The uniaxial tensile test of the 5A06-O aluminium−magnesium(Al−Mg)alloy sheet was performed in the temperature range of 20−300℃ to obtain the true stress−true strain curves at different temperatures and strain rates.The constitutive model of 5A06-O Al−Mg alloy sheet with the temperature range from 150 to 300℃ was established.Based on the test results,a unique finite element simulation platform for warm hydroforming of 5A06-O Al−Mg alloy was set up using the general finite element software MSC.Marc to simulate warm hydroforming of classic specimen,and a coupled thermo-mechanical finite element model for warm hydroforming of cylindrical cup was built up.Combined with the experiment,the influence of the temperature field distribution and loading conditions on the sheet formability was studied.The results show that the non-isothermal temperature distribution conditions can significantly improve the forming performance of the material.As the temperature increases,the impact of the punching speed on the forming becomes particularly obvious;the optimal values of the fluid pressure and blank holder force required for forming are reduced.展开更多
Solid-state bonding between pure titanium and Ti6Al4V(TC4)alloy was conducted by a new bonding method named as rigid restraint thermal self-compressing bonding.Effects of heating time on bonding interface,atom diffusi...Solid-state bonding between pure titanium and Ti6Al4V(TC4)alloy was conducted by a new bonding method named as rigid restraint thermal self-compressing bonding.Effects of heating time on bonding interface,atom diffusion and mechanical properties of the joints were studied.Results show that atom diffusion between pure titanium and TC4 alloy significantly takes place during bonding.The diffusion depths of Al and V in pure titanium side are increased with increasing heating time.Due to the enhancement of atom diffusion,bond quality of the bonding interface is improved along with the increase of heating time.The heating time seems to have little effect on microhardness distribution across the joint.However,the tensile strength and ductility of the joint have close relation to heating time.Prolonging heating time can improve the tensile strength and ductility of the joint,especially the latter.When the heating time increases to 450 s,solid-state joint with good combination of strength and ductility is attained.展开更多
The influence of initial groove angle on strain rate inside and outside groove of Ti6Al4V alloy was investigated.Based on the evolution of strain rate inside and outside groove,the effect of strain rate difference on ...The influence of initial groove angle on strain rate inside and outside groove of Ti6Al4V alloy was investigated.Based on the evolution of strain rate inside and outside groove,the effect of strain rate difference on the evolution of normal stress and effective stress inside and outside groove was also analyzed.The results show that when linear loading path changes from uniaxial tension to equi-biaxial tension,the initial groove angle plays a weaker role in the evolution of strain rate in the M-K model.Due to the constraint of force equilibrium between inside and outside groove,the strain rate difference makes the normal stress inside groove firstly decrease and then increase during calculation,which makes the prediction algorithm of forming limit convergent at elevated temperature.The decrease of normal stress inside groove is mainly caused by high temperature softening effect and the rotation of groove,while the increase of normal stress inside groove is mainly due to strain rate hardening effect.展开更多
Preceding works tend to explicate affordance through supposing what is happening here and now.They seldom relate it to actual social,diachronic activities,such as foreign language learning.To tackle this issue,this st...Preceding works tend to explicate affordance through supposing what is happening here and now.They seldom relate it to actual social,diachronic activities,such as foreign language learning.To tackle this issue,this study explores how students actualize affordances in technology-enriched language learning environment(TELLE)by examining their perezhivanija(lived and emotional experience),a term borrowed from sociocultural theory.Because an individual’s social life is a developing process or a perezhivanie2,it is necessary to base the research in a dynamic development of language learning to figure out how the affordances are actualized.Narrative interviews were adopted to collect data from three Chinese college students who learn English as a foreign language in a Northeastern university in China.The results showed that due to the students’different past perezhivanija in English learning,their present interpretations of the perceived affordances in TELLE varied.This influenced hugely in their actions taken during their English learning in college to actualize the affordances.The findings indicated that the actualization of affordances is historical,dynamic and developmental instead of static.It does not lie in the autonomy of the students or the teachers,but in the institutional and cultural legitimacy of technology use in student’s social life.The paper contributes to the application of affordance theory in foreign language learning and provides implications to language teaching practice in TELLE.展开更多
Based on feature modeling and mathematical analysis methods,a process-oriented and modular parametric design system for advanced turbine cooling blade is developed with UG API,aiming at the structural complexity and h...Based on feature modeling and mathematical analysis methods,a process-oriented and modular parametric design system for advanced turbine cooling blade is developed with UG API,aiming at the structural complexity and high design difficulty of aero-engine cooling turbine blade.The relationship between the external and internal body features,the body attached feature is analyzed as viewed from the feature and parameter terms.The parametric design processes and design examples of the external body shape,tenon,platform and internal body shape,ribs,pin fins are introduced.The system improves the design efficiency of cooling turbine blade and establishes the foundation of multidisciplinary design optimization procedure for it.展开更多
基金the National Natural Science Foundation of China(Nos.52101274,51731002)Natural Science Foundation of Shandong Province,China(Nos.ZR2020QE011,ZR2022ME089)+1 种基金Youth Top Talent Foundation of Yantai University,China(No.2219008)Graduate Innovation Foundation of Yantai University,China(No.GIFYTU2240).
文摘The Ni-coated carbon nanotubes(Ni@CNT)composite was synthesized by the facile“filtration+calcination”of Ni-based metal−organic framework(MOF)precursor and the obtained composite was used as a catalyst for MgH_(2).MgH_(2)was mixed evenly with different amounts of Ni@CNT(2.5,5.0 and 7.5,wt.%)through ball milling.The MgH_(2)−5wt.%Ni@CNT can absorb 5.2 wt.%H_(2)at 423 K in 200 s and release about 3.75 wt.%H_(2)at 573 K in 1000 s.And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol(H_(2)).The in-situ generated Mg_(2)Ni/Mg_(2)NiH4 exhibits a good catalytic effect due to the provided more diffusion channels that can be used as“hydrogen pump”.And the presence of carbon nanotubes improves the properties of MgH_(2)to some extent.
基金Project(BX201600010) supported by the National Postdoctoral Program for Innovative Talents of ChinaProject(2015QNRC001) supported by the Young Elite Scientist Sponsorship Program of China
文摘The effect of heat treatments on laser additive manufacturing(LAM)Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy(TC17)was studied aiming to optimize its microstructure and mechanical properties.The as-deposited sample exhibits features of a mixed priorβgrain structure consisting of equiaxed and columnar grains,intragranular ultra-fineαlaths and numerous continuous grain boundaryα(αGB).After being pre-annealed inα+βregion(840°C)and standard solution and aging treated,the continuousαGB becomes coarser and the precipitate free zone(PFZ)nearby theαGB transforms into a zone filled with ultra-fine secondaryα(αS)but no primaryα(αP).When pre-annealed in singleβregion(910°C),allαphases transform intoβphase and the alloying elements distribute uniformly near the grain boundary.DiscontinuousαGB and uniform mixture ofαP andαS near grain boundary form after subsequent solution and aging treatment.The two heat treatments can improve the tensile mechanical properties of LAM TC17to satisfy the aviation standard for TC17.
基金Project(51671013)supported by the National Natural Science Foundation of ChinaProject(Z161100004916061)supported by the Beijing Nova Program,China
文摘The thorough-thickness inhomogeneity of precipitate distribution and pitting corrosion behavior of 95 mm-thick 2297 Al-Li alloy rolled plate was investigated using scanning electron microscopy, transmission electron microscopy and electrochemistry method. Precipitate distribution and pit size were statistically analyzed to obtain quantitative information and corresponding correlation. The population density and the size fraction of precipitate on different sections in the thick plate are ranked from high to low in the following order: quarter-section(QS) > surface section(SS) > mid-section(MS). After 300 min potentiostatic polarization, the number and the total volume of pits are ranked from high to low as QS>SS>MS, indicating a higher pitting susceptibility of the plate in QS with more precipitates. The through-thickness inhomogeneity of pitting corrosion in 2297 Al-Li alloy thick plate is mainly ascribed to inhomogeneous precipitate distribution.
基金financially supported by the National Natural Science Foundation of China(Nos.51801009,52071005)the Youth Talent Support Program of Beihang University,China(No.YWF-21-BJ-J-1143)Shuangyiliu Fund of Beihang University,China(No.030810)。
文摘Single-layer and multilayer laser additive manufacturing(LAM)for TC11 alloy with different Nd additions was conducted and the effect of Nd addition on microstructure and properties was studied.With the addition of Nd,the aspect ratio of melting pools of single-layer specimens increases and the columnar-to-equiaxed transition occurs.The originalβgrain size andαplate width of TC11−1.0Nd are significantly reduced compared with those of pure TC11 specimens.It is proposed that the evenly distributed fine Nd_(2)O_(3) precipitates of about 1.51μm are formed preferentially during rapid solidification of melting pool,and they serve as heterogeneous nucleation particles to refine the microstructure in the subsequent solidification and solid-state phase transformation.Due to the multiple effects of Nd on the microstructure,the ultimate tensile strength of TC11−1.0Nd increases,while the yield strength,ductility and microhardness decrease compared with those of pure TC11.
基金supported by the National Nature Science Foundation of China(No.12072007)the Ningbo Nature Science Foundation(No.202003N4018)+1 种基金the Aeronautical Science Foundation of China (No. 20182951014)the Defense Industrial Technology Development Program(No.JCKY2019209C004)
文摘The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation directly.By contrast,the technique of dynamic load identification based on the dynamic model and the response information is a feasible access to obtain the dynamic load indirectly.Furthermore,there are multi-source uncertainties which cannot be neglected for complex systems in the load identification process,especially for aerospace vehicles.In this paper,recent developments in the dynamic load identification field for aerospace vehicles considering multi-source uncertainties are reviewed,including the deterministic dynamic load identification and uncertain dynamic load identification.The inversion methods with different principles of concentrated and distributed loads,and the quantification and propagation analysis for multi-source uncertainties are discussed.Eventually,several possibilities remaining to be explored are illustrated in brief.
文摘The uniaxial tensile test of the 5A06-O aluminium−magnesium(Al−Mg)alloy sheet was performed in the temperature range of 20−300℃ to obtain the true stress−true strain curves at different temperatures and strain rates.The constitutive model of 5A06-O Al−Mg alloy sheet with the temperature range from 150 to 300℃ was established.Based on the test results,a unique finite element simulation platform for warm hydroforming of 5A06-O Al−Mg alloy was set up using the general finite element software MSC.Marc to simulate warm hydroforming of classic specimen,and a coupled thermo-mechanical finite element model for warm hydroforming of cylindrical cup was built up.Combined with the experiment,the influence of the temperature field distribution and loading conditions on the sheet formability was studied.The results show that the non-isothermal temperature distribution conditions can significantly improve the forming performance of the material.As the temperature increases,the impact of the punching speed on the forming becomes particularly obvious;the optimal values of the fluid pressure and blank holder force required for forming are reduced.
基金financial support provided by Beijing Aeronautical Manufacturing Technology Research Institutethe help provided by Science and Technology, China, on Power Beam Processes Laboratory at Beijing Aeronautical Manufacturing Technology Research Institute, China
文摘Solid-state bonding between pure titanium and Ti6Al4V(TC4)alloy was conducted by a new bonding method named as rigid restraint thermal self-compressing bonding.Effects of heating time on bonding interface,atom diffusion and mechanical properties of the joints were studied.Results show that atom diffusion between pure titanium and TC4 alloy significantly takes place during bonding.The diffusion depths of Al and V in pure titanium side are increased with increasing heating time.Due to the enhancement of atom diffusion,bond quality of the bonding interface is improved along with the increase of heating time.The heating time seems to have little effect on microhardness distribution across the joint.However,the tensile strength and ductility of the joint have close relation to heating time.Prolonging heating time can improve the tensile strength and ductility of the joint,especially the latter.When the heating time increases to 450 s,solid-state joint with good combination of strength and ductility is attained.
基金Project(51775023)supported by the National Natural Science Foundation of ChinaProject(YWF-18-BJ-J-75)supported by the Fundamental Research Funds for the Central Universities,China
文摘The influence of initial groove angle on strain rate inside and outside groove of Ti6Al4V alloy was investigated.Based on the evolution of strain rate inside and outside groove,the effect of strain rate difference on the evolution of normal stress and effective stress inside and outside groove was also analyzed.The results show that when linear loading path changes from uniaxial tension to equi-biaxial tension,the initial groove angle plays a weaker role in the evolution of strain rate in the M-K model.Due to the constraint of force equilibrium between inside and outside groove,the strain rate difference makes the normal stress inside groove firstly decrease and then increase during calculation,which makes the prediction algorithm of forming limit convergent at elevated temperature.The decrease of normal stress inside groove is mainly caused by high temperature softening effect and the rotation of groove,while the increase of normal stress inside groove is mainly due to strain rate hardening effect.
基金part of the work for the National Project on Social Sciences“Efficacy of Ecological Affordances Actualization in Language Learning Environment in China in the Technology Era”(16BYY093)
文摘Preceding works tend to explicate affordance through supposing what is happening here and now.They seldom relate it to actual social,diachronic activities,such as foreign language learning.To tackle this issue,this study explores how students actualize affordances in technology-enriched language learning environment(TELLE)by examining their perezhivanija(lived and emotional experience),a term borrowed from sociocultural theory.Because an individual’s social life is a developing process or a perezhivanie2,it is necessary to base the research in a dynamic development of language learning to figure out how the affordances are actualized.Narrative interviews were adopted to collect data from three Chinese college students who learn English as a foreign language in a Northeastern university in China.The results showed that due to the students’different past perezhivanija in English learning,their present interpretations of the perceived affordances in TELLE varied.This influenced hugely in their actions taken during their English learning in college to actualize the affordances.The findings indicated that the actualization of affordances is historical,dynamic and developmental instead of static.It does not lie in the autonomy of the students or the teachers,but in the institutional and cultural legitimacy of technology use in student’s social life.The paper contributes to the application of affordance theory in foreign language learning and provides implications to language teaching practice in TELLE.
文摘Based on feature modeling and mathematical analysis methods,a process-oriented and modular parametric design system for advanced turbine cooling blade is developed with UG API,aiming at the structural complexity and high design difficulty of aero-engine cooling turbine blade.The relationship between the external and internal body features,the body attached feature is analyzed as viewed from the feature and parameter terms.The parametric design processes and design examples of the external body shape,tenon,platform and internal body shape,ribs,pin fins are introduced.The system improves the design efficiency of cooling turbine blade and establishes the foundation of multidisciplinary design optimization procedure for it.