Inspired by eagle’s visual system,an eagle-vision-based object detection method for unmanned aerial vehicle(UAV)formation in hazy weather is proposed in this paper.To restore the hazy image,the values of atmospheric ...Inspired by eagle’s visual system,an eagle-vision-based object detection method for unmanned aerial vehicle(UAV)formation in hazy weather is proposed in this paper.To restore the hazy image,the values of atmospheric light and transmission are estimated on the basis of the signal processing mechanism of ON and OFF channels in eagle’s retina.Local features of the dehazed image are calculated according to the color antagonism mechanism and contrast sensitivity function of eagle’s visual system.A center-surround operation is performed to simulate the response of reception field.The final saliency map is generated by the Random Forest algorithm.Experimental results verify that the proposed method is capable to detect UAVs in hazy image and has superior performance over traditional methods.展开更多
To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt ...To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt trirotor UAV in the transition mode.Firstly,the nonlinear model of the tilt tri-rotor UAV is established.Secondly,the tilt tri-rotor UAV altitude controller and attitude controller are designed by a neural network adaptive control method,and the GWO algorithm is adopted to optimize the parameters of the neural network and the controllers.Thirdly,two altitude control strategies are designed in the transition mode.Finally,comparative simulations are carried out to demonstrate the effectiveness and robustness of the proposed control scheme.展开更多
Autonomous aerial refueling(AAR)has demonstrated significant benefits to aviation by extending the aircraft range and endurance.It is of significance to assess system safety for autonomous aerial refueling.In this pap...Autonomous aerial refueling(AAR)has demonstrated significant benefits to aviation by extending the aircraft range and endurance.It is of significance to assess system safety for autonomous aerial refueling.In this paper,the reachability analysis method is adopted to assess system safety.Due to system uncertainties,the aerial refueling system can be considered as a stochastic system.Thus,probabilistic reachability is considered.Since there is a close relationship between reachability probability and collision probability,the collision probability of the AAR system is analyzed by using reachability analysis techniques.Then,the collision probability is accessed by using the Monte-Carlo experiment method.Finally,simulations demonstrate the effectiveness of the proposed safety assessment method.展开更多
This paper investigates the optimal control problem of spacecraft reorientation subject to attitude forbidden constraints,angular velocity saturation and actuator saturation simultaneously.A second-order cone programm...This paper investigates the optimal control problem of spacecraft reorientation subject to attitude forbidden constraints,angular velocity saturation and actuator saturation simultaneously.A second-order cone programming(SOCP)technology is developed to solve the strong nonlinear and non-convex control problem in real time.Specifically,the nonlinear attitude kinematic and dynamic are transformed and relaxed to a standard affine system,and linearization and L1 penalty technique are adopted to convexify non-convex inequality constraints.With the proposed quadratic performance index of angular velocity,the optimal control solution is obtained with high accuracy using the successive SOCP algorithm.Finally,the effectiveness of the algorithm is validated by numerical simulation.展开更多
基金the Science and Technology Innovation 2030-Key Projects(Nos.2018AAA0102303,2018AAA0102403)the Aeronautical Science Foundation of China(No.20175851033)the National Natural Science Foundation of China(Nos.U1913602,U19B2033,91648205,61803011).
文摘Inspired by eagle’s visual system,an eagle-vision-based object detection method for unmanned aerial vehicle(UAV)formation in hazy weather is proposed in this paper.To restore the hazy image,the values of atmospheric light and transmission are estimated on the basis of the signal processing mechanism of ON and OFF channels in eagle’s retina.Local features of the dehazed image are calculated according to the color antagonism mechanism and contrast sensitivity function of eagle’s visual system.A center-surround operation is performed to simulate the response of reception field.The final saliency map is generated by the Random Forest algorithm.Experimental results verify that the proposed method is capable to detect UAVs in hazy image and has superior performance over traditional methods.
文摘To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt trirotor UAV in the transition mode.Firstly,the nonlinear model of the tilt tri-rotor UAV is established.Secondly,the tilt tri-rotor UAV altitude controller and attitude controller are designed by a neural network adaptive control method,and the GWO algorithm is adopted to optimize the parameters of the neural network and the controllers.Thirdly,two altitude control strategies are designed in the transition mode.Finally,comparative simulations are carried out to demonstrate the effectiveness and robustness of the proposed control scheme.
基金This work was supported by the National Natural Science Foundation of China(No.61933010).
文摘Autonomous aerial refueling(AAR)has demonstrated significant benefits to aviation by extending the aircraft range and endurance.It is of significance to assess system safety for autonomous aerial refueling.In this paper,the reachability analysis method is adopted to assess system safety.Due to system uncertainties,the aerial refueling system can be considered as a stochastic system.Thus,probabilistic reachability is considered.Since there is a close relationship between reachability probability and collision probability,the collision probability of the AAR system is analyzed by using reachability analysis techniques.Then,the collision probability is accessed by using the Monte-Carlo experiment method.Finally,simulations demonstrate the effectiveness of the proposed safety assessment method.
基金This work was supported by the National Natural Science Foundation of China(Nos.61960206011,61633003)the Beijing Natural Science Foundation(No.JQ19017)。
文摘This paper investigates the optimal control problem of spacecraft reorientation subject to attitude forbidden constraints,angular velocity saturation and actuator saturation simultaneously.A second-order cone programming(SOCP)technology is developed to solve the strong nonlinear and non-convex control problem in real time.Specifically,the nonlinear attitude kinematic and dynamic are transformed and relaxed to a standard affine system,and linearization and L1 penalty technique are adopted to convexify non-convex inequality constraints.With the proposed quadratic performance index of angular velocity,the optimal control solution is obtained with high accuracy using the successive SOCP algorithm.Finally,the effectiveness of the algorithm is validated by numerical simulation.