期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多参数MRI的影像组学融合模型对乳腺癌腋窝淋巴结转移的术前预测价值
1
作者
尹智
崔艳芬
+1 位作者
任嘉梁
杨晓棠
《中华解剖与临床杂志》
2023年第12期773-781,共9页
目的探讨基于多参数MRI的影像组学融合模型在乳腺癌术前预测腋窝淋巴结(ALN)转移的应用价值。方法回顾性队列研究。纳入山西省肿瘤医院2020年8月—2021年9月经病理证实的272例乳腺癌患者的多参数MRI及临床病理资料。患者均为女性,年龄28...
目的探讨基于多参数MRI的影像组学融合模型在乳腺癌术前预测腋窝淋巴结(ALN)转移的应用价值。方法回顾性队列研究。纳入山西省肿瘤医院2020年8月—2021年9月经病理证实的272例乳腺癌患者的多参数MRI及临床病理资料。患者均为女性,年龄28~79(53.0±10.9)岁,其中ALN阳性107例、ALN阴性165例。按照7∶3的比例随机将患者分为训练组(191例)和验证组(81例)。从T2加权像(T2WI)、表观弥散系数(ADC)图和增强T1加权像(cT1WI)序列中提取影像组学特征。采用单因素逻辑回归、相关性分析和Boruta算法3个步骤进行特征选择,然后采用支持向量机(SVM)、随机森林(RF)和逻辑回归(LR)3种机器学习方法构建影像组学模型,并基于最优模型计算每位患者的影像组学分数(Radscore)。同时,通过多因素逐步回归分析筛选乳腺癌ALN转移的独立危险因素并构建临床模型。最后,联合Radscore和临床独立危险因素构建融合模型,并绘制列线图。采用受试者操作特征曲线、校准曲线和决策曲线(DCA)来评价模型对乳腺癌ALN转移的预测性能及临床效益。结果训练组和验证组患者肿瘤位置比较,差异有统计学意义(P<0.05);训练组中ALN阳性与ALN阴性患者间的肿瘤位置、MRI评估淋巴结状态比较,验证组中ALN阳性与ALN阴性患者间的雌激素受体、分子亚型及MRI评估淋巴结状态比较,差异均有统计学意义(P值均<0.05)。基于多参数MRI降维选择后,得到了6个与ALN转移呈显著相关的影像组学特征(P值均<0.05)。在训练组和验证组中,SVM、RF和LR模型均表现出很好的预测能力,AUC分别为0.784、0.826、0.703和0.733、0.817、0.703,其中RF模型效能最高。单因素、多因素回归分析显示,MRI评估淋巴结状态是乳腺癌ALN转移的独立预测因子[比值比(95%可信区间)=10.909(5.210~24.511),P<0.001],采用这一指标构建临床模型。联合Radscore和MRI评估ALN状态的融合模型在训练组和验证组中均表现出更好的性能,AUC分别为0.867和0.866,且其诊断效能均优于上述3种机器学习模型和临床模型(AUC分别为0.719和0.700)。DCA显示,3种机器学习模型、临床模型和融合模型均有一定的临床效益,其中融合模型的净收益值最大。结论基于多参数MRI影像组学特征和联合MRI评估淋巴结状态的融合模型有助于术前准确预测乳腺癌ALN转移状态。
展开更多
关键词
乳腺肿瘤
磁共振成像
影像组学
机器学习
腋窝淋巴结转移
原文传递
题名
基于多参数MRI的影像组学融合模型对乳腺癌腋窝淋巴结转移的术前预测价值
1
作者
尹智
崔艳芬
任嘉梁
杨晓棠
机构
山西医科大学医学影像学院
山西省肿瘤医院/中国医学科学院肿瘤医院山西医院/山西医科大学附属肿瘤医院医学影像科
北京通用电气公司药品管理科
出处
《中华解剖与临床杂志》
2023年第12期773-781,共9页
基金
国家自然科学基金(82171923、82001789)
山西省卫健委“四个一批”科技兴医创新计划(2020TD09、2021XM51)。
文摘
目的探讨基于多参数MRI的影像组学融合模型在乳腺癌术前预测腋窝淋巴结(ALN)转移的应用价值。方法回顾性队列研究。纳入山西省肿瘤医院2020年8月—2021年9月经病理证实的272例乳腺癌患者的多参数MRI及临床病理资料。患者均为女性,年龄28~79(53.0±10.9)岁,其中ALN阳性107例、ALN阴性165例。按照7∶3的比例随机将患者分为训练组(191例)和验证组(81例)。从T2加权像(T2WI)、表观弥散系数(ADC)图和增强T1加权像(cT1WI)序列中提取影像组学特征。采用单因素逻辑回归、相关性分析和Boruta算法3个步骤进行特征选择,然后采用支持向量机(SVM)、随机森林(RF)和逻辑回归(LR)3种机器学习方法构建影像组学模型,并基于最优模型计算每位患者的影像组学分数(Radscore)。同时,通过多因素逐步回归分析筛选乳腺癌ALN转移的独立危险因素并构建临床模型。最后,联合Radscore和临床独立危险因素构建融合模型,并绘制列线图。采用受试者操作特征曲线、校准曲线和决策曲线(DCA)来评价模型对乳腺癌ALN转移的预测性能及临床效益。结果训练组和验证组患者肿瘤位置比较,差异有统计学意义(P<0.05);训练组中ALN阳性与ALN阴性患者间的肿瘤位置、MRI评估淋巴结状态比较,验证组中ALN阳性与ALN阴性患者间的雌激素受体、分子亚型及MRI评估淋巴结状态比较,差异均有统计学意义(P值均<0.05)。基于多参数MRI降维选择后,得到了6个与ALN转移呈显著相关的影像组学特征(P值均<0.05)。在训练组和验证组中,SVM、RF和LR模型均表现出很好的预测能力,AUC分别为0.784、0.826、0.703和0.733、0.817、0.703,其中RF模型效能最高。单因素、多因素回归分析显示,MRI评估淋巴结状态是乳腺癌ALN转移的独立预测因子[比值比(95%可信区间)=10.909(5.210~24.511),P<0.001],采用这一指标构建临床模型。联合Radscore和MRI评估ALN状态的融合模型在训练组和验证组中均表现出更好的性能,AUC分别为0.867和0.866,且其诊断效能均优于上述3种机器学习模型和临床模型(AUC分别为0.719和0.700)。DCA显示,3种机器学习模型、临床模型和融合模型均有一定的临床效益,其中融合模型的净收益值最大。结论基于多参数MRI影像组学特征和联合MRI评估淋巴结状态的融合模型有助于术前准确预测乳腺癌ALN转移状态。
关键词
乳腺肿瘤
磁共振成像
影像组学
机器学习
腋窝淋巴结转移
Keywords
Breast neoplasms
Magnetic resonance imaging
Radiomics
Machine learning
Axillary lymph node metastasis
分类号
R445.2 [医药卫生—影像医学与核医学]
R737.9 [医药卫生—肿瘤]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于多参数MRI的影像组学融合模型对乳腺癌腋窝淋巴结转移的术前预测价值
尹智
崔艳芬
任嘉梁
杨晓棠
《中华解剖与临床杂志》
2023
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部