期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于 SPA-PSO-BP 的花生高光谱图像分类方法研究 被引量:1
1
作者 杨洋 徐熙平 +3 位作者 薛航 张宁 张越 索科 《激光技术》 CAS CSCD 北大核心 2024年第4期556-564,共9页
为了提高可见-近红外(VNIR)高光谱花生图像分类的准确率和减少分类检测的运算时间,提出了基于连续投影算法(SPA)融合粒子群算法优化后向传播神经网络(PSO-BP)的分类检测模型。利用高光谱成像系统采集了7个花生品种样本的VNIR光谱数据,... 为了提高可见-近红外(VNIR)高光谱花生图像分类的准确率和减少分类检测的运算时间,提出了基于连续投影算法(SPA)融合粒子群算法优化后向传播神经网络(PSO-BP)的分类检测模型。利用高光谱成像系统采集了7个花生品种样本的VNIR光谱数据,并进行了背景分割和光谱信息的提取,去除受噪声和杂散光影响大的波段后,运用Savitzky-Golay卷积平滑对400 nm~900 nm范围的波长进行预处理;采用SPA降维及均方根误差值选择了25个特征波长,同时利用PSO-BP神经网络的初始权重和阈值,构建PSO-BP模型作为分类器进行了实验,取得了测试集识别准确率为98.7%、kappa系数为0.98及遗漏误差为3的数据。结果表明,相较4个对比方法构建的分类模型,该模型的准确率分别提高了2.1%、8.6%、3.9%和4.3%。该方法在基于高光谱成像的花生品种分类技术中具有很好的应用前景,为花生品种的高精度、快速无损分类提供了新思路。 展开更多
关键词 光谱学 图像分类 连续投影算法 粒子群算法 后向传播神经网络 花生
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部