Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides...Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides great opportunities for studying various complex systems, the experimental implementation and theoretical description of 2D FT spectroscopy measurement still face many challenges, which limits their wide application.Recently, the 2D FT spectroscopy reaches maturity due to many new developments which greatly reduces the technical barrier in the experimental implementation of the 2D FT spectrometer. There have been several different approaches developed for the optical design of the 2D FT spectrometer, each with its own advantages and limitations. Thus, a procedure to help an experimentalist to build a 2D FT spectroscopy experimental apparatus is needed.This tutorial review is intending to provide an accessible introduction for a beginner to build a 2D FT spectrometer.展开更多
Tryptophan derivatives have long been used as site-specific biological probes. 4-Cyanotrypto- phan emits in the visible region and is the smallest blue fluorescent amino acid probe for bio- logical applications. Other...Tryptophan derivatives have long been used as site-specific biological probes. 4-Cyanotrypto- phan emits in the visible region and is the smallest blue fluorescent amino acid probe for bio- logical applications. Other indole or tryptophan analogs may emit at even longer wavelengths than 4-cyanotryptophan. We performed FTIR, UV-Vis, and steady-state and time-resolved fluorescence spectroscopy on six ester-derivatized indoles in different solvents. Methyl indole- 4-carboxylate emits at 450 nrn with a long fluorescence lifetirne, and is a promising candidate for a fluorescent probe. The ester-derivatized indoles could be used as spectroscopic probes to study local protein environments. Our measurements provide a guide for choosing esterderivatized indoles to use in practice and data for computational modeling of the effect of substitution on the electronic transitions of indole.展开更多
基金the National Natural Science Foundation of China(No.91753118 and No.21773012)the Fundamental Research Funds for Central Universities。
文摘Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides great opportunities for studying various complex systems, the experimental implementation and theoretical description of 2D FT spectroscopy measurement still face many challenges, which limits their wide application.Recently, the 2D FT spectroscopy reaches maturity due to many new developments which greatly reduces the technical barrier in the experimental implementation of the 2D FT spectrometer. There have been several different approaches developed for the optical design of the 2D FT spectrometer, each with its own advantages and limitations. Thus, a procedure to help an experimentalist to build a 2D FT spectroscopy experimental apparatus is needed.This tutorial review is intending to provide an accessible introduction for a beginner to build a 2D FT spectrometer.
基金supported by Beijing Natural Science Foundation(L172028)the National Natural Science Foundation of China(No.21773012 and No.91753118)+1 种基金the Recruitment Program of Global Youth Expertsthe Fundamental Research Funds for Central Universities
文摘Tryptophan derivatives have long been used as site-specific biological probes. 4-Cyanotrypto- phan emits in the visible region and is the smallest blue fluorescent amino acid probe for bio- logical applications. Other indole or tryptophan analogs may emit at even longer wavelengths than 4-cyanotryptophan. We performed FTIR, UV-Vis, and steady-state and time-resolved fluorescence spectroscopy on six ester-derivatized indoles in different solvents. Methyl indole- 4-carboxylate emits at 450 nrn with a long fluorescence lifetirne, and is a promising candidate for a fluorescent probe. The ester-derivatized indoles could be used as spectroscopic probes to study local protein environments. Our measurements provide a guide for choosing esterderivatized indoles to use in practice and data for computational modeling of the effect of substitution on the electronic transitions of indole.