期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
中速磨煤机风煤比的优化 被引量:11
1
作者 贾剑华 金安 《华北电力技术》 CAS 北大核心 2003年第10期8-9,12,共3页
分析了影响磨煤机风煤比的各项因素。结合测试数据给出了 ZGM95 G型磨煤机风煤比优化曲线。分析指出了控制石子煤排放量 ;磨煤机按预定的风煤比曲线运行 。
关键词 锅炉 中速磨煤机 风煤比 优化 ZGM95G型
下载PDF
Dynamic model for predicting nitrogen oxide concentration at outlet of selective catalytic reduction denitrification system based on kernel extreme learning machine 被引量:1
2
作者 Ma Ning Liu Lei +2 位作者 Yang Zhenyong Yan Laiqing Dong Ze 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期383-391,共9页
To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal co... To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal component analysis(PCA)was proposed and applied to the prediction of nitrogen oxide(NO_(x))concentration at the outlet of a selective catalytic reduction(SCR)denitrification system.First,PCA is applied to the feature information extraction of input data,and the current and previous sequence values of the extracted information are used as the inputs of the KELM model to reflect the dynamic characteristics of the NO_(x)concentration at the SCR outlet.Then,the model takes the historical data of the NO_(x)concentration at the SCR outlet as the model input to improve its accuracy.Finally,an optimization algorithm is used to determine the optimal parameters of the model.Compared with the Gaussian process regression,long short-term memory,and convolutional neural network models,the prediction errors are reduced by approximately 78.4%,67.6%,and 59.3%,respectively.The results indicate that the proposed dynamic model structure is reliable and can accurately predict NO_(x)concentrations at the outlet of the SCR system. 展开更多
关键词 selective catalytic reduction nitrogen oxides principal component analysis kernel extreme learning machine dynamic model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部