期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多GNSS系统组合PPP定位精度评估 被引量:3
1
作者 邵先锋 刘流 贾雪 《地理空间信息》 2021年第4期44-50,I0006,共8页
采用MGEX网提供的GPS、GLONASS、BDS、GALILEO四系统双频观测数据,以CODE、GBM、WUM、GRG精密产品进行了静/准动态模式下多系统组合无电离层延迟PPP浮点解与整数钟法固定解实验。结果表明多系统的组合提升了定位精度,尤其是GLONASS的加... 采用MGEX网提供的GPS、GLONASS、BDS、GALILEO四系统双频观测数据,以CODE、GBM、WUM、GRG精密产品进行了静/准动态模式下多系统组合无电离层延迟PPP浮点解与整数钟法固定解实验。结果表明多系统的组合提升了定位精度,尤其是GLONASS的加入效果最明显,CODE与GBM产品的解算精度优于WUM、GRG产品。部分模糊度固定相比全模糊度固定的效果显著,模糊度固定明显缩短了PPP收敛时间,在静态模式下相对浮点解精度提升10%以内,动态模式下E方向与U方向精度提升效果最好。 展开更多
关键词 PPP 浮点解 整数钟法 固定解 部分模糊度固定
下载PDF
细化Transformer网络的弱监督图像语义分割
2
作者 孙万春 冯欣 +1 位作者 马慧 胡立松 《计算机应用研究》 CSCD 北大核心 2023年第11期3515-3520,共6页
图像级标签的弱监督图像语义分割方法是目前比较热门的研究方向,类激活图生成方式是最为常用的解决该类问题的主要工作方法。由于类激活图的稀疏性,导致判别区域的准确性降低。针对上述问题,提出了一种改进的Transformer网络弱监督图像... 图像级标签的弱监督图像语义分割方法是目前比较热门的研究方向,类激活图生成方式是最为常用的解决该类问题的主要工作方法。由于类激活图的稀疏性,导致判别区域的准确性降低。针对上述问题,提出了一种改进的Transformer网络弱监督图像学习方法。首先,引入空间注意力交换层来扩大类激活图的覆盖范围;其次,进一步设计了一个注意力自适应模块来指导模型增强弱区域的类响应;特别地,在类生成过程中,构建了一个自适应跨域来提高模型分类性能。该方法在Pascal VOC 2012验证集和测试集上分别达到了73.5%和73.0%。实验结果表明,细化Transformer网络学习方法有助于提高弱监督图像的语义分割性能。 展开更多
关键词 深度学习 弱监督学习 图像语义分割 TRANSFORMER
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部