肠道病毒71型(enterovirus type 71,EV71)感染常可引起婴幼儿手足口病(hand,foot and mouth disease,HFMD),还可引起中枢神经系统并发症等重症,甚至死亡。研究认为,EV71诱发重症的原因主要与病毒感染诱导细胞程序性死亡(programmed cell...肠道病毒71型(enterovirus type 71,EV71)感染常可引起婴幼儿手足口病(hand,foot and mouth disease,HFMD),还可引起中枢神经系统并发症等重症,甚至死亡。研究认为,EV71诱发重症的原因主要与病毒感染诱导细胞程序性死亡(programmed cell death,PCD)及诱导细胞产生大量炎症因子有关。病毒感染可通过激活不同的信号通路触发细胞程序性死亡,主要包括含半胱氨酸的天冬氨酸蛋白水解酶(cysteinyl aspartate specific proteinase,caspase)依赖的细胞凋亡、细胞焦亡,以及非caspase依赖的细胞坏死性凋亡。本研究旨在探讨EV71感染诱导细胞程序性死亡的形态学和分子生物学特征,利用显微镜和免疫荧光技术检测EV71感染后细胞形态变化,JC-1染色检测感染后细胞线粒体膜电位变化,流式细胞术及Annexin VFITC/PI双染法、乳酸脱氢酶释放量法检测感染细胞的细胞膜损伤程度,结合蛋白免疫印迹法检测病毒感染后细胞中多聚ADP核糖聚合酶[poly(ADP-ribose)polymerase,PARP]、caspase-9、caspase-3等凋亡因子,以及细胞焦亡关键效应蛋白Gasdermin D、坏死性凋亡效应蛋白MLKL的磷酸化情况。结果显示,EV71感染后细胞主要呈现凋亡特征,并伴随少量细胞坏死。与细胞凋亡相关的PARP被剪切,caspase-9和caspase-3等相关因子被激活。经泛caspase抑制剂处理后,细胞程序性死亡被抑制,但仍有部分细胞坏死。结果提示,EV71感染以细胞凋亡为主,也可能存在非caspase依赖的细胞程序性死亡。展开更多
Ⅰ型膜融合蛋白(class I membrane fusion protein)在Ⅰ型包膜病毒入侵宿主细胞过程中发挥重要作用。基于抑制六螺旋结构形成的多肽类融合抑制剂设计的原理是模拟该蛋白融合区域的自身序列,与病毒融合蛋白结合形成异源六聚体,从而阻断...Ⅰ型膜融合蛋白(class I membrane fusion protein)在Ⅰ型包膜病毒入侵宿主细胞过程中发挥重要作用。基于抑制六螺旋结构形成的多肽类融合抑制剂设计的原理是模拟该蛋白融合区域的自身序列,与病毒融合蛋白结合形成异源六聚体,从而阻断病毒与靶细胞膜的融合。此类融合抑制剂的传统设计主要基于一级与二级结构,但为进一步强化其抗病毒活性,通常需依赖病毒膜融合蛋白三级结构信息,从而限制了对那些尚无病毒蛋白三级结构信息的新发病毒的多肽类融合抑制剂的快速优化和研发。本研究提出了不依赖蛋白三级结构信息,而利用I-Mutant2.0软件来辅助设计和优化多肽类病毒膜融合抑制剂的设想。根据I-Mutant2.0的预测结果,以中东呼吸综合征冠状病毒(Middle East respiratory syndrome coronavirus,MERS-CoV)为模型,分析该病毒HR2区融合抑制剂序列中若干适合与不适合优化的位点,并设计了一系列多肽。结果发现,对适合优化的位点进行调整的多肽,其对HR1的结合能力及对病毒的抑制活性均有所提升;反之,多肽活性明显下降。结果表明,利用I-Mutant2.0辅助设计与优化病毒融合抑制多肽的方法具有一定的可行性,为进一步开发新的融合抑制剂设计方法奠定了基础。展开更多
文摘肠道病毒71型(enterovirus type 71,EV71)感染常可引起婴幼儿手足口病(hand,foot and mouth disease,HFMD),还可引起中枢神经系统并发症等重症,甚至死亡。研究认为,EV71诱发重症的原因主要与病毒感染诱导细胞程序性死亡(programmed cell death,PCD)及诱导细胞产生大量炎症因子有关。病毒感染可通过激活不同的信号通路触发细胞程序性死亡,主要包括含半胱氨酸的天冬氨酸蛋白水解酶(cysteinyl aspartate specific proteinase,caspase)依赖的细胞凋亡、细胞焦亡,以及非caspase依赖的细胞坏死性凋亡。本研究旨在探讨EV71感染诱导细胞程序性死亡的形态学和分子生物学特征,利用显微镜和免疫荧光技术检测EV71感染后细胞形态变化,JC-1染色检测感染后细胞线粒体膜电位变化,流式细胞术及Annexin VFITC/PI双染法、乳酸脱氢酶释放量法检测感染细胞的细胞膜损伤程度,结合蛋白免疫印迹法检测病毒感染后细胞中多聚ADP核糖聚合酶[poly(ADP-ribose)polymerase,PARP]、caspase-9、caspase-3等凋亡因子,以及细胞焦亡关键效应蛋白Gasdermin D、坏死性凋亡效应蛋白MLKL的磷酸化情况。结果显示,EV71感染后细胞主要呈现凋亡特征,并伴随少量细胞坏死。与细胞凋亡相关的PARP被剪切,caspase-9和caspase-3等相关因子被激活。经泛caspase抑制剂处理后,细胞程序性死亡被抑制,但仍有部分细胞坏死。结果提示,EV71感染以细胞凋亡为主,也可能存在非caspase依赖的细胞程序性死亡。
文摘Ⅰ型膜融合蛋白(class I membrane fusion protein)在Ⅰ型包膜病毒入侵宿主细胞过程中发挥重要作用。基于抑制六螺旋结构形成的多肽类融合抑制剂设计的原理是模拟该蛋白融合区域的自身序列,与病毒融合蛋白结合形成异源六聚体,从而阻断病毒与靶细胞膜的融合。此类融合抑制剂的传统设计主要基于一级与二级结构,但为进一步强化其抗病毒活性,通常需依赖病毒膜融合蛋白三级结构信息,从而限制了对那些尚无病毒蛋白三级结构信息的新发病毒的多肽类融合抑制剂的快速优化和研发。本研究提出了不依赖蛋白三级结构信息,而利用I-Mutant2.0软件来辅助设计和优化多肽类病毒膜融合抑制剂的设想。根据I-Mutant2.0的预测结果,以中东呼吸综合征冠状病毒(Middle East respiratory syndrome coronavirus,MERS-CoV)为模型,分析该病毒HR2区融合抑制剂序列中若干适合与不适合优化的位点,并设计了一系列多肽。结果发现,对适合优化的位点进行调整的多肽,其对HR1的结合能力及对病毒的抑制活性均有所提升;反之,多肽活性明显下降。结果表明,利用I-Mutant2.0辅助设计与优化病毒融合抑制多肽的方法具有一定的可行性,为进一步开发新的融合抑制剂设计方法奠定了基础。