期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于新型微通道分离技术的甲醇制烯烃废水处理 被引量:3
1
作者 黄起中 刘冰 +1 位作者 马红鹏 吕文杰 《化工进展》 EI CAS CSCD 北大核心 2023年第2期669-676,共8页
甲醇制烯烃(MTO)开辟了一条制取低碳烯烃的新途径,但由于MTO反应器内旋风分离器分离精度的限制,微细催化剂颗粒会进入后续的水系统,从而产生大量废水。MTO急冷废水中微细颗粒的分离是实现废水回用的关键,针对目前MTO废水处理技术的不足... 甲醇制烯烃(MTO)开辟了一条制取低碳烯烃的新途径,但由于MTO反应器内旋风分离器分离精度的限制,微细催化剂颗粒会进入后续的水系统,从而产生大量废水。MTO急冷废水中微细颗粒的分离是实现废水回用的关键,针对目前MTO废水处理技术的不足,本文提出一种新型的旋流再生型微通道分离技术处理MTO废水,并建立了处理量为50t/h的工业级实验装置进行长周期分离实验。结果表明:该装置在处理MTO废水中具有较好的性能,平均悬浮物含量从143mg/L降至22mg/L,分离媒质的平均悬浮物残留率在2%以下。该技术具有运行周期长、对悬浮物去除效率高、运行压降低、分离媒质再生彻底等特点,技术的成功应用有效缓解了甲醇制烯烃装置水系统的堵塞,并极大地节约水资源和减少环境污染。 展开更多
关键词 甲醇制烯烃 废水 微通道型分离 旋流再生 催化剂
下载PDF
Recent advances in glycerol valorization via electrooxidation:Catalyst,mechanism and device 被引量:2
2
作者 Jianxiang Wu Xuejing Yang Ming Gong 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第12期2966-2986,共21页
Glycerol is one of the most important biomass-based platform molecules,massively produced as a by-product in the biodiesel industry.Its high purification cost from the crude glycerol raw material limits its applicatio... Glycerol is one of the most important biomass-based platform molecules,massively produced as a by-product in the biodiesel industry.Its high purification cost from the crude glycerol raw material limits its application and demands new strategies for valorization.Compared to the conventional thermocatalytic strategies,the electrocatalytic strategies can not only enable the selective conversion at mild conditions but also pair up the cathodic reactions for the co-production with higher efficiencies.In this review,we summarize the recent advances of catalyst designs and mechanistic understandings for the electrocatalytic glycerol oxidation(GOR),and aim to provide an overview of the GOR process and the intrinsic structural-activity correlation for inspiring future work in this field.The review is dissected into three sections.We will first introduce the recent efforts of designing more efficient and selective catalysts for GOR,especially toward the production of value-added products.Then,we will summarize the current understandings about the reaction network based on the ex-situ and in-situ spectroscopic studies as well as the theoretical works.Lastly,we will select some representative examples of creating real electrochemical devices for the valorization of glycerol.By summarizing these previous efforts,we will provide our vision of future directions in the field of GOR toward real applications. 展开更多
关键词 Glycerol electrooxidation Reaction mechanism Design of electrocatalyst Real application Biomass conversion
下载PDF
Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble‐metal‐free photocatalyst VC/CdS nanowires 被引量:2
3
作者 Muhammad Tayyab Yujie Liu +5 位作者 Shixiong Min Rana Muhammad Irfan Qiaohong Zhu Liang Zhou Juying Lei Jinlong Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第4期1165-1175,共11页
In this work we used CdS NWs(nanowires)with vanadium carbide(VC)attached via facile electrostatic self‐assembly and calcination method.The results showed that compared to pristine CdS NWs,the photocatalytic activity ... In this work we used CdS NWs(nanowires)with vanadium carbide(VC)attached via facile electrostatic self‐assembly and calcination method.The results showed that compared to pristine CdS NWs,the photocatalytic activity of CdS NWs loaded with the particular amount of VC was dramatically enhanced.Among them,the VC/CS‐15 indicated the highest enhancement for simultaneous production of H2 with selective oxidation of benzyl alcohol(BO)into benzaldehyde(BD).The highest hydrogen evolution rate of 20.5 mmol g^(-1)h^(-1)was obtained with more than 99%selectivity for BD production under visible light(λ˃420 nm)irradiation for 2 h,which was almost 661 times higher than the pristine CdS NWs.This enhancement of photocatalytic activity is due to the VC,which provides a favorable attraction for BO by lowering the zeta potential,along with the active site for hydrogen production,and retard the recombination of electron‐hole pairs by increasing the conductivity of the photocatalyst.Moreover,the apparent quantum efficiency(AQE)of VC/CS‐15 for BD and H_(2)production at monochromatic 420 nm is about 7.5%.At the end of the hydrogen evolution test,the selective oxidation with more than 99%selectivity was obtained.It hopes this work will prove its future significance and move scientific community toward a more economical way for achieving the commercialization of H_(2) by photocatalysis. 展开更多
关键词 Hydrogen production Selective oxidation BENZALDEHYDE Noble‐metal‐free Visible light
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部