Glycerol is one of the most important biomass-based platform molecules,massively produced as a by-product in the biodiesel industry.Its high purification cost from the crude glycerol raw material limits its applicatio...Glycerol is one of the most important biomass-based platform molecules,massively produced as a by-product in the biodiesel industry.Its high purification cost from the crude glycerol raw material limits its application and demands new strategies for valorization.Compared to the conventional thermocatalytic strategies,the electrocatalytic strategies can not only enable the selective conversion at mild conditions but also pair up the cathodic reactions for the co-production with higher efficiencies.In this review,we summarize the recent advances of catalyst designs and mechanistic understandings for the electrocatalytic glycerol oxidation(GOR),and aim to provide an overview of the GOR process and the intrinsic structural-activity correlation for inspiring future work in this field.The review is dissected into three sections.We will first introduce the recent efforts of designing more efficient and selective catalysts for GOR,especially toward the production of value-added products.Then,we will summarize the current understandings about the reaction network based on the ex-situ and in-situ spectroscopic studies as well as the theoretical works.Lastly,we will select some representative examples of creating real electrochemical devices for the valorization of glycerol.By summarizing these previous efforts,we will provide our vision of future directions in the field of GOR toward real applications.展开更多
In this work we used CdS NWs(nanowires)with vanadium carbide(VC)attached via facile electrostatic self‐assembly and calcination method.The results showed that compared to pristine CdS NWs,the photocatalytic activity ...In this work we used CdS NWs(nanowires)with vanadium carbide(VC)attached via facile electrostatic self‐assembly and calcination method.The results showed that compared to pristine CdS NWs,the photocatalytic activity of CdS NWs loaded with the particular amount of VC was dramatically enhanced.Among them,the VC/CS‐15 indicated the highest enhancement for simultaneous production of H2 with selective oxidation of benzyl alcohol(BO)into benzaldehyde(BD).The highest hydrogen evolution rate of 20.5 mmol g^(-1)h^(-1)was obtained with more than 99%selectivity for BD production under visible light(λ˃420 nm)irradiation for 2 h,which was almost 661 times higher than the pristine CdS NWs.This enhancement of photocatalytic activity is due to the VC,which provides a favorable attraction for BO by lowering the zeta potential,along with the active site for hydrogen production,and retard the recombination of electron‐hole pairs by increasing the conductivity of the photocatalyst.Moreover,the apparent quantum efficiency(AQE)of VC/CS‐15 for BD and H_(2)production at monochromatic 420 nm is about 7.5%.At the end of the hydrogen evolution test,the selective oxidation with more than 99%selectivity was obtained.It hopes this work will prove its future significance and move scientific community toward a more economical way for achieving the commercialization of H_(2) by photocatalysis.展开更多
文摘Glycerol is one of the most important biomass-based platform molecules,massively produced as a by-product in the biodiesel industry.Its high purification cost from the crude glycerol raw material limits its application and demands new strategies for valorization.Compared to the conventional thermocatalytic strategies,the electrocatalytic strategies can not only enable the selective conversion at mild conditions but also pair up the cathodic reactions for the co-production with higher efficiencies.In this review,we summarize the recent advances of catalyst designs and mechanistic understandings for the electrocatalytic glycerol oxidation(GOR),and aim to provide an overview of the GOR process and the intrinsic structural-activity correlation for inspiring future work in this field.The review is dissected into three sections.We will first introduce the recent efforts of designing more efficient and selective catalysts for GOR,especially toward the production of value-added products.Then,we will summarize the current understandings about the reaction network based on the ex-situ and in-situ spectroscopic studies as well as the theoretical works.Lastly,we will select some representative examples of creating real electrochemical devices for the valorization of glycerol.By summarizing these previous efforts,we will provide our vision of future directions in the field of GOR toward real applications.
文摘In this work we used CdS NWs(nanowires)with vanadium carbide(VC)attached via facile electrostatic self‐assembly and calcination method.The results showed that compared to pristine CdS NWs,the photocatalytic activity of CdS NWs loaded with the particular amount of VC was dramatically enhanced.Among them,the VC/CS‐15 indicated the highest enhancement for simultaneous production of H2 with selective oxidation of benzyl alcohol(BO)into benzaldehyde(BD).The highest hydrogen evolution rate of 20.5 mmol g^(-1)h^(-1)was obtained with more than 99%selectivity for BD production under visible light(λ˃420 nm)irradiation for 2 h,which was almost 661 times higher than the pristine CdS NWs.This enhancement of photocatalytic activity is due to the VC,which provides a favorable attraction for BO by lowering the zeta potential,along with the active site for hydrogen production,and retard the recombination of electron‐hole pairs by increasing the conductivity of the photocatalyst.Moreover,the apparent quantum efficiency(AQE)of VC/CS‐15 for BD and H_(2)production at monochromatic 420 nm is about 7.5%.At the end of the hydrogen evolution test,the selective oxidation with more than 99%selectivity was obtained.It hopes this work will prove its future significance and move scientific community toward a more economical way for achieving the commercialization of H_(2) by photocatalysis.