期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
超滤技术在生活污水处理回用系统中的应用 被引量:7
1
作者 彭日亮 陈泽萍 《华北电力技术》 CAS 2005年第8期24-26,54,共4页
由于目前我国水资源的匮乏,加之国家对环境质量要求的日趋严格,传统的生活污水处理技术不但已经难以满足环保排放要求,而且还给企业带来了巨大的经济负担。本文通过对大唐国际云冈热电生活污水处理回用系统的介绍,说明超滤技术在生活污... 由于目前我国水资源的匮乏,加之国家对环境质量要求的日趋严格,传统的生活污水处理技术不但已经难以满足环保排放要求,而且还给企业带来了巨大的经济负担。本文通过对大唐国际云冈热电生活污水处理回用系统的介绍,说明超滤技术在生活污水处理中应用的先进性和可靠性。 展开更多
关键词 污水处理 超滤 应用
下载PDF
Dynamic model for predicting nitrogen oxide concentration at outlet of selective catalytic reduction denitrification system based on kernel extreme learning machine 被引量:1
2
作者 Ma Ning Liu Lei +2 位作者 Yang Zhenyong Yan Laiqing Dong Ze 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期383-391,共9页
To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal co... To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal component analysis(PCA)was proposed and applied to the prediction of nitrogen oxide(NO_(x))concentration at the outlet of a selective catalytic reduction(SCR)denitrification system.First,PCA is applied to the feature information extraction of input data,and the current and previous sequence values of the extracted information are used as the inputs of the KELM model to reflect the dynamic characteristics of the NO_(x)concentration at the SCR outlet.Then,the model takes the historical data of the NO_(x)concentration at the SCR outlet as the model input to improve its accuracy.Finally,an optimization algorithm is used to determine the optimal parameters of the model.Compared with the Gaussian process regression,long short-term memory,and convolutional neural network models,the prediction errors are reduced by approximately 78.4%,67.6%,and 59.3%,respectively.The results indicate that the proposed dynamic model structure is reliable and can accurately predict NO_(x)concentrations at the outlet of the SCR system. 展开更多
关键词 selective catalytic reduction nitrogen oxides principal component analysis kernel extreme learning machine dynamic model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部