期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
600MW亚临界汽包炉炉水平衡磷酸盐处理工艺试验研究 被引量:4
1
作者 星成霞 孙璐 +2 位作者 王应高 李永立 金绪良 《工业水处理》 CAS CSCD 北大核心 2014年第5期17-20,共4页
为了降低某电厂600MW亚临界汽包炉饱和蒸汽钠含量,以预防汽轮机积盐,将该锅炉炉水处理方式由常规磷酸盐处理方式(Pr)转换为平衡磷酸盐处理方式(Err)。试验结果表明:该锅炉炉水Err工况磷酸盐平衡点为0.45-0.55mg/L,控制炉水电... 为了降低某电厂600MW亚临界汽包炉饱和蒸汽钠含量,以预防汽轮机积盐,将该锅炉炉水处理方式由常规磷酸盐处理方式(Pr)转换为平衡磷酸盐处理方式(Err)。试验结果表明:该锅炉炉水Err工况磷酸盐平衡点为0.45-0.55mg/L,控制炉水电导率小于10μS/cm、用NaOH调整炉水pH9.30-9.50、炉水钠小于1000μg/L、饱和蒸汽携带系数(以钠计)小于0.1%,可保证该机组额定工况运行时饱和蒸汽钠小于3.0x1O^-6g/ks,达到水汽质量标准要求的期望控制值. 展开更多
关键词 600MW亚临界汽包炉 蒸汽钠含量 平衡磷酸盐处理 磷酸盐平衡点浓度
下载PDF
Dynamic model for predicting nitrogen oxide concentration at outlet of selective catalytic reduction denitrification system based on kernel extreme learning machine 被引量:1
2
作者 Ma Ning Liu Lei +2 位作者 Yang Zhenyong Yan Laiqing Dong Ze 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期383-391,共9页
To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal co... To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal component analysis(PCA)was proposed and applied to the prediction of nitrogen oxide(NO_(x))concentration at the outlet of a selective catalytic reduction(SCR)denitrification system.First,PCA is applied to the feature information extraction of input data,and the current and previous sequence values of the extracted information are used as the inputs of the KELM model to reflect the dynamic characteristics of the NO_(x)concentration at the SCR outlet.Then,the model takes the historical data of the NO_(x)concentration at the SCR outlet as the model input to improve its accuracy.Finally,an optimization algorithm is used to determine the optimal parameters of the model.Compared with the Gaussian process regression,long short-term memory,and convolutional neural network models,the prediction errors are reduced by approximately 78.4%,67.6%,and 59.3%,respectively.The results indicate that the proposed dynamic model structure is reliable and can accurately predict NO_(x)concentrations at the outlet of the SCR system. 展开更多
关键词 selective catalytic reduction nitrogen oxides principal component analysis kernel extreme learning machine dynamic model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部