期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
自然环境下多类水果采摘目标识别的通用改进SSD模型 被引量:86
1
作者 彭红星 黄博 +4 位作者 邵园园 李泽森 张朝武 陈燕 熊俊涛 《农业工程学报》 EI CAS CSCD 北大核心 2018年第16期155-162,共8页
为解决当前自然环境下水果识别率不高、泛化性不强等问题,该文以苹果、荔枝、脐橙、皇帝柑4种水果为研究对象,提出了一种改进的SSD(single shot multi-boxdetector)深度学习水果检测模型:将经典SSD深度学习模型中的VGG16输入模型替换为R... 为解决当前自然环境下水果识别率不高、泛化性不强等问题,该文以苹果、荔枝、脐橙、皇帝柑4种水果为研究对象,提出了一种改进的SSD(single shot multi-boxdetector)深度学习水果检测模型:将经典SSD深度学习模型中的VGG16输入模型替换为Res Net-101模型,并运用迁移学习方法和随机梯度下降算法优化SSD深度学习模型。该文基于Caffe深度学习框架,对自然环境下采集的水果图像进行不同网络模型、不同数据集大小和不同遮挡比例等多组水果识别检测效果对比试验。试验表明:改进的SSD深度学习水果检测模型对4种水果在各种环境下的平均检测精度达到88.4%,高于经典SSD深度学习模型中的86.38%,经过数据增强后平均检测精度可提升至89.53%,在遮挡面积低于50%的情况下F1值能达到96.12%,有较好的泛化性和鲁棒性,可以很好地实现自然环境下多类水果的精准检测,可为农业自动化采摘中的水果识别检测问题提供新的方案。 展开更多
关键词 图像识别 模型 算法 水果检测 深度学习 SSD VGG16 ResNet-101
下载PDF
基于BP、LSTM和ARIMA模型的蔬菜价格预测 被引量:16
2
作者 彭红星 郑楷航 +3 位作者 黄国彬 林督盛 阳智超 刘华鼐 《中国农机化学报》 北大核心 2020年第4期193-199,共7页
为系统统计蔬菜价格,实现蔬菜价格可视化并加以预测,以利于生产者科学决策。为此,首先爬取广州江南果菜批发市场所有的蔬菜价格,并对蔬菜价格的数据集进行预处理,然后建立起基于时间序列的ARIMA预测模型、BP神经网络预测模型和LSTM神经... 为系统统计蔬菜价格,实现蔬菜价格可视化并加以预测,以利于生产者科学决策。为此,首先爬取广州江南果菜批发市场所有的蔬菜价格,并对蔬菜价格的数据集进行预处理,然后建立起基于时间序列的ARIMA预测模型、BP神经网络预测模型和LSTM神经网络预测模型,通过3种模型对爬取的蔬菜价格进行分析和预测,最后将3种预测模型的实验结果进行对比。在选取的多种蔬菜的预测结果中,LSTM、BP、ARIMA模型的相对误差小于1%的平均比例分别为0.037、0.07、0.097,相对误差小于5%的平均比例分别为0.215、0.338、0.433,相对误差小于10%的平均比例分别为0.436、0.573、0.694。结果表明,ARIMA模型在预测蔬菜价格方面的准确率比LSTM、BP模型更高。 展开更多
关键词 蔬菜价格 BP神经网络 LSTM神经网络 ARIMA 预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部