期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多重特征增强与特征融合SSD的荔枝检测
被引量:
12
1
作者
彭红星
李荆
+4 位作者
徐慧明
陈虎
邢政
何慧君
熊俊涛
《农业工程学报》
EI
CAS
CSCD
北大核心
2022年第4期169-177,共9页
使用无人机拍摄的荔枝图像目标尺寸小、特征信息不足。为了更多、更好地检测到荔枝,该研究提出一种基于多重特征增强与特征融合的SSD(Single Shot Multibox Detector based on Multiple Feature Enhancement and Feature Fusion,MFEFF-S...
使用无人机拍摄的荔枝图像目标尺寸小、特征信息不足。为了更多、更好地检测到荔枝,该研究提出一种基于多重特征增强与特征融合的SSD(Single Shot Multibox Detector based on Multiple Feature Enhancement and Feature Fusion,MFEFF-SSD)模型。为了减少不必要的计算量,删除原始主干网络Vgg16的最后两个卷积层,并在Conv8和Conv9层使用感受野模块(Receptive Field Block,RFB),提升主干网络的特征提取能力;然后使用高效空间金字塔模块(Efficient Spatial Pyramid Block,ESP),增强浅层特征;提出改进的路径聚合网络(Improved Path Aggregation Network,IPANet)多尺度融合特征,提升荔枝小目标的检测效果;最后在浅层引入通道注意力机制SE(SqueezeandExcitation)模块,进一步提高检测精度。同时,调整先验框的大小和数量,适应荔枝小目标的尺寸。试验结果表明:该研究提出的RFB模块可以提高检测效果;IPANet的平均精确率比FPN(Feature Pyramid Network)略有提高;SE模块的平均精确率比CBAM(Convolutional Block Attention Module)、ECA(Efficient Channel Attention)模块分别提高1.15个百分点和2.12个百分点;ESP模块的平均精确率比ASPP(atrous spatial pyramid pooling)提高2.51个百分点;与SSD、Yolov4-tiny、Faster-RCNN和Center Net模型相比,MFEFF-SSD模型的平均精确率分别提高30.62、14.58、44.46和15.93个百分点,能够更精准、有效地实现对无人机拍摄的荔枝图像检测,可为小目标农作物的检测开拓思路。
展开更多
关键词
无人机
图像处理
特征增强
特征融合
荔枝检测
下载PDF
职称材料
题名
基于多重特征增强与特征融合SSD的荔枝检测
被引量:
12
1
作者
彭红星
李荆
徐慧明
陈虎
邢政
何慧君
熊俊涛
机构
华南农业大学数学与信息学院/广州市智慧农业重点实验室
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2022年第4期169-177,共9页
基金
广州市基础研究计划基础与应用基础研究项目(202102080337)
国家自然科学基金项目(61863011,32071912)
+2 种基金
2019年梅州市应用型科技专项资金项目(关键及共性技术攻关)(2019B0201005)
广东省农业厅乡村振兴项目“荔枝自动采摘装备关键部件研制与试验”
广州市科技计划项目(202002020016)。
文摘
使用无人机拍摄的荔枝图像目标尺寸小、特征信息不足。为了更多、更好地检测到荔枝,该研究提出一种基于多重特征增强与特征融合的SSD(Single Shot Multibox Detector based on Multiple Feature Enhancement and Feature Fusion,MFEFF-SSD)模型。为了减少不必要的计算量,删除原始主干网络Vgg16的最后两个卷积层,并在Conv8和Conv9层使用感受野模块(Receptive Field Block,RFB),提升主干网络的特征提取能力;然后使用高效空间金字塔模块(Efficient Spatial Pyramid Block,ESP),增强浅层特征;提出改进的路径聚合网络(Improved Path Aggregation Network,IPANet)多尺度融合特征,提升荔枝小目标的检测效果;最后在浅层引入通道注意力机制SE(SqueezeandExcitation)模块,进一步提高检测精度。同时,调整先验框的大小和数量,适应荔枝小目标的尺寸。试验结果表明:该研究提出的RFB模块可以提高检测效果;IPANet的平均精确率比FPN(Feature Pyramid Network)略有提高;SE模块的平均精确率比CBAM(Convolutional Block Attention Module)、ECA(Efficient Channel Attention)模块分别提高1.15个百分点和2.12个百分点;ESP模块的平均精确率比ASPP(atrous spatial pyramid pooling)提高2.51个百分点;与SSD、Yolov4-tiny、Faster-RCNN和Center Net模型相比,MFEFF-SSD模型的平均精确率分别提高30.62、14.58、44.46和15.93个百分点,能够更精准、有效地实现对无人机拍摄的荔枝图像检测,可为小目标农作物的检测开拓思路。
关键词
无人机
图像处理
特征增强
特征融合
荔枝检测
Keywords
UAV
image processing
feature enhancement
feature fusion
litchi detection
分类号
S147.2 [农业科学—肥料学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多重特征增强与特征融合SSD的荔枝检测
彭红星
李荆
徐慧明
陈虎
邢政
何慧君
熊俊涛
《农业工程学报》
EI
CAS
CSCD
北大核心
2022
12
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部