期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
MI和改进PCA的降维算法在股价预测中的应用
被引量:
8
1
作者
谢心蕊
雷秀仁
赵岩
《计算机工程与应用》
CSCD
北大核心
2020年第21期139-144,共6页
考虑到单个特征对标签的有效性及多特征之间的信息冗余问题,提出一种联合互信息和改进PCA的双重降维方法。利用互信息对众多的特征进行初步筛选,舍弃一部分对标签信息贡献较低的特征,使用累积方差贡献率和复相关系数共同确定主元个数的...
考虑到单个特征对标签的有效性及多特征之间的信息冗余问题,提出一种联合互信息和改进PCA的双重降维方法。利用互信息对众多的特征进行初步筛选,舍弃一部分对标签信息贡献较低的特征,使用累积方差贡献率和复相关系数共同确定主元个数的主成分分析法进行二次降维,不仅保证了主元模型的信息容量,同时也避免了过多噪声的参与,从而保证了预测过程的准确性。通过神经网络对实际股票数据进行预测,表明了提出的降维算法的有效性。
展开更多
关键词
互信息
改进PCA
双重降维
神经网络预测
下载PDF
职称材料
题名
MI和改进PCA的降维算法在股价预测中的应用
被引量:
8
1
作者
谢心蕊
雷秀仁
赵岩
机构
华南理工大学数学学院信息与计算科学系
华南理工大学
数学
学院
统计与金融
数学
系
出处
《计算机工程与应用》
CSCD
北大核心
2020年第21期139-144,共6页
基金
国家自然科学基金(No.11572127)。
文摘
考虑到单个特征对标签的有效性及多特征之间的信息冗余问题,提出一种联合互信息和改进PCA的双重降维方法。利用互信息对众多的特征进行初步筛选,舍弃一部分对标签信息贡献较低的特征,使用累积方差贡献率和复相关系数共同确定主元个数的主成分分析法进行二次降维,不仅保证了主元模型的信息容量,同时也避免了过多噪声的参与,从而保证了预测过程的准确性。通过神经网络对实际股票数据进行预测,表明了提出的降维算法的有效性。
关键词
互信息
改进PCA
双重降维
神经网络预测
Keywords
Mutual Information(MI)
improved PCA
double dimensionality reduction
neural network prediction
分类号
TP39 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
MI和改进PCA的降维算法在股价预测中的应用
谢心蕊
雷秀仁
赵岩
《计算机工程与应用》
CSCD
北大核心
2020
8
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部