期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于高光谱成像的马铃薯叶片叶绿素分布可视化研究 被引量:18
1
作者 郑涛 刘宁 +3 位作者 孙红 龙耀威 杨玮 ZHANG Qin 《农业机械学报》 EI CAS CSCD 北大核心 2017年第S1期153-159,340,共8页
针对马铃薯作物叶片进行了叶绿素含量无损检测技术及分布图绘制方法研究,用以指示作物长势并指导精细化管理。首先利用高光谱成像技术采集了65个马铃薯叶片的400个样本点高光谱图像和相应的SPAD值,提取并计算叶绿素测量区域的叶片平均... 针对马铃薯作物叶片进行了叶绿素含量无损检测技术及分布图绘制方法研究,用以指示作物长势并指导精细化管理。首先利用高光谱成像技术采集了65个马铃薯叶片的400个样本点高光谱图像和相应的SPAD值,提取并计算叶绿素测量区域的叶片平均光谱后,分别采用蒙特卡罗无信息变量消除算法(MC-UVE)和自适应重加权算法(CARS)筛选出了12个和23个叶绿素含量敏感波长,建立了马铃薯叶片叶绿素含量偏最小二乘(PLS)回归模型。建模结果如下:基于MC-UVE算法筛选的12个敏感波长的PLSR诊断模型,建模精度R2C为0.79,验证精度R2V为0.73;基于CARS算法筛选的23个敏感波长建立的PLSR诊断模型,建模精度R2C为0.82,验证精度R2V为0.80。择优选取CARS-PLSR模型计算马铃薯叶片每个像素点的叶绿素含量,从而利用伪彩色绘图绘制了马铃薯叶片叶绿素含量可视化分布图,最终实现马铃薯叶片含量无损检测以及叶绿素分布可视化表达,以期为后续马铃薯作物大田冠层叶绿素分布诊断提供支持。 展开更多
关键词 叶绿素含量 马铃薯叶片 蒙特卡罗无信息变量消除算法 自适应重加权算法 高光谱成像
下载PDF
高光谱图像检测马铃薯植株叶绿素含量垂直分布 被引量:36
2
作者 孙红 郑涛 +3 位作者 刘宁 程萌 李民赞 Zhang Qin 《农业工程学报》 EI CAS CSCD 北大核心 2018年第1期149-156,共8页
为了检测马铃薯作物叶绿素含量,该文按照叶片垂直分布位置采集马铃薯叶片样本的成像高光谱数据,提取并计算了400个划分区域的平均光谱,使用手持式SPAD-502叶绿素仪测定了相应位置的SPAD(soil plant analysis development)值。采用标准... 为了检测马铃薯作物叶绿素含量,该文按照叶片垂直分布位置采集马铃薯叶片样本的成像高光谱数据,提取并计算了400个划分区域的平均光谱,使用手持式SPAD-502叶绿素仪测定了相应位置的SPAD(soil plant analysis development)值。采用标准正态变量校正(standard normal variate,SNV)方法对光谱数据进行预处理,分析了开花期植株自下而上垂直叶位间光谱和叶绿素分布关系,其光谱反射率在382~700 nm区间随叶位的升高反射率增加(上>中>下),在700~1 019 nm范围下叶位反射率高于上部和中部叶位(下>上>中),且SPAD均值依次为36.41、43.11、47.04。分别采用相关系数分析法和随机蛙跳(random frog,RF)算法筛选叶绿素含量敏感波长,并建立偏最小二乘回归(partial least squares regression,PLSR)模型。结果如下:基于相关系数分析法筛选的12个敏感波长主要位于530~550和706~708nm范围,建模精度RC2为0.7 588,验证精度RV2为0.5 773;基于random frog算法筛选的11个敏感波长(554.62、560.26、575.04、576.35、595.09、604.7、649.44、731.8、752.78、786.38、789.97 nm),建模精度RC2为0.8 423,验证精度RV2为0.7 676。选取RF-PLS模型计算马铃薯叶片每个像素点的叶绿素含量,绘制不同叶位马铃薯叶片叶绿素含量可视化分布图,结果可反映马铃薯在开花期植株上叶片叶绿素动态响应关系,实现了不同叶位马铃薯叶片叶绿素含量无损检测以及分布可视化表达。 展开更多
关键词 光谱分析 作物 叶绿素 垂直分布 马铃薯作物 随机蛙跳算法 高光谱成像
下载PDF
玉米拔节期冠层叶绿素含量多光谱图像检测 被引量:10
3
作者 孙红 赵毅 +4 位作者 张猛 文瑶 李民赞 杨玮 Qin Zhang 《农业工程学报》 EI CAS CSCD 北大核心 2015年第S2期186-192,共7页
为了探索大田玉米冠层叶片叶绿素指标的快速检测方法。采用自主研发的2-CCD多光谱图像成像系统采集了大田玉米拔节期冠层图像,并同步获取了样本叶绿素含量指标SPAD值。对多光谱图像进行了平滑滤波,并基于HSI颜色空间实现了冠层图像的分... 为了探索大田玉米冠层叶片叶绿素指标的快速检测方法。采用自主研发的2-CCD多光谱图像成像系统采集了大田玉米拔节期冠层图像,并同步获取了样本叶绿素含量指标SPAD值。对多光谱图像进行了平滑滤波,并基于HSI颜色空间实现了冠层图像的分割。提取了玉米冠层可见光(blue(B),green(G),red(R);400~700 nm)和近红外(near-infrared,NIR,760~1 000 nm)4个波段平均灰度值并计算了平均灰度值计算比值植被指数(RVI,ratio vegetation index)、归一化植被指数(NDVI,normalized difference vegetation index)、修改型二次土壤调节植被指数(MSAVI2,modified soil-adjusted vegetation index)等8种常见植被指数作为图像检测参数。分析了这12个检测参数与叶绿素指标之间的相关性,讨论了图像检测参数的多种组合,建立了叶绿素指标的多元线性回归分析(MLRA,multiple linear regression analysis)模型。研究结果表明:R、G、B波段的平均灰度值与叶绿素指标成较高负相关,相关系数分别为-0.73,-0.71和-0.71,植被指数中相关性较好的是NDVI、MSAVI2和RVI,相关系数分别为0.83、0.81和-0.81。基于这6个参数组合建立的叶绿素指标估算模型拟合度最好,其建模集决定系数为0.79,验证集决定系数为0.71,研究结果为无损检测玉米拔节期叶绿素含量提供了支持。 展开更多
关键词 叶绿素 图像处理 模型 多光谱图像 玉米拔节期 植被指数
下载PDF
基于4波段作物光谱测量仪的小麦分蘖数预测 被引量:12
4
作者 张猛 孙红 +2 位作者 李民赞 Zhang Qin 郑立华 《农业机械学报》 EI CAS CSCD 北大核心 2016年第9期341-347,共7页
使用4波段(550 nm、650 nm、766 nm和850 nm)便携式作物反射光谱测量仪对泰农18型冬小麦分蘖状态进行自动监测与建模,通过分析植被指数与分蘖数的相关关系实现了对分蘖数的建模预测。首先利用仪器获得小麦冠层在4个波段的反射信号,计算... 使用4波段(550 nm、650 nm、766 nm和850 nm)便携式作物反射光谱测量仪对泰农18型冬小麦分蘖状态进行自动监测与建模,通过分析植被指数与分蘖数的相关关系实现了对分蘖数的建模预测。首先利用仪器获得小麦冠层在4个波段的反射信号,计算对应波段的作物冠层反射率,经校正后计算得到OSAVI、MSAVI、SAVI、EVI2、TVI、NDGI、NDVI、RVI和DVI 9种多波段组合的植被指数。然后分析以上9种植被指数与小麦分蘖数之间的相关关系,确定了可用于该类型小麦分蘖状态监测和评价的植被指数类型。2013—2014年在山东省淄博市和桓台县开展了田间试验,计算了不同氮素水平下泰农18型小麦返青期和起身期分蘖数以及其两个生育期分蘖数与9种植被指数之间的相关系数,OSAVI(650,850)指数与返青期茎蘖数相关系数最高,决定系数最高为0.85,均方根误差为118.93;EVI2(650,850)指数与起身期茎蘖数相关系数最高,决定系数最高为0.84,均方根误差为73.04;以上试验结果表明,在冬小麦返青期和起身期利用OSAVI(650,850)和EVI2(650,850)两种植被指数可以快速预测小麦分蘖状态,可为田间精细管理提供科学依据。 展开更多
关键词 小麦 分蘖数 冠层反射率 OSAVI EVI2
下载PDF
基于多波段光谱探测仪的玉米冠层叶绿素含量诊断 被引量:6
5
作者 刘豪杰 赵毅 +3 位作者 文瑶 孙红 李民赞 Zhang Qin 《农业机械学报》 EI CAS CSCD 北大核心 2015年第S1期228-233,245,共7页
为了快速无损地检测大田作物冠层叶绿素含量,使用便携式多波段光谱探测仪针对农大8号(G1)、郑单(G2)、先玉(G3)和京农科(G4)4种玉米作物品种,在拔节期采集550、650、766、850 nm波长处太阳光信号和作物冠层反射光信号,用于建立玉米冠层... 为了快速无损地检测大田作物冠层叶绿素含量,使用便携式多波段光谱探测仪针对农大8号(G1)、郑单(G2)、先玉(G3)和京农科(G4)4种玉米作物品种,在拔节期采集550、650、766、850 nm波长处太阳光信号和作物冠层反射光信号,用于建立玉米冠层叶绿素含量诊断模型。首先,利用作物冠层650 nm和550 nm波长反射率之间的差值TD剔除了土壤背景数据点(TD>0)。然后,组合计算了NDVI、RVI和DVI共12个植被指数,分析各植被指数与叶绿素含量之间的相关关系,结果显示与G1~G4品种叶绿素含量相关性最优的参数分别为RVI(766,550)、DVI(850,650)、NDVI(850,550)和RVI(766,550),相关系数均达0.6以上。数据按一定间隔聚类后,相关性分析结果表明多波段光谱探测仪对玉米叶绿素含量检测最优分辨率为0.5 mg/L,且NDVI(850,550)、NDVI(766,550)和RVI(850,550)与叶绿素含量的相关系数分别为0.837 0、0.773 7和0.767 7,达到了强相关水平。最后,建立了多品种通用型玉米拔节期叶绿素含量诊断模型,可为大田玉米拔节期叶绿素含量诊断提供技术支持。 展开更多
关键词 叶绿素含量 植被指数 冠层反射率 多光谱检测仪
下载PDF
基于RED-NIR的主动光源叶绿素含量检测装置设计与试验 被引量:11
6
作者 孙红 邢子正 +3 位作者 张智勇 龙耀威 李民赞 ZHANG Qin 《农业机械学报》 EI CAS CSCD 北大核心 2019年第B07期175-181,296,共8页
为了无损和高效地检测作物叶绿素含量,设计了一种采用主动光源的双波长便携式叶绿素含量检测装置,获取作物在红色范围660nm附近的光谱深吸收和近红外850nm附近的光谱强反射特征。采集作物叶片的反射光信号,经转换、调制和放大后,利用灰... 为了无损和高效地检测作物叶绿素含量,设计了一种采用主动光源的双波长便携式叶绿素含量检测装置,获取作物在红色范围660nm附近的光谱深吸收和近红外850nm附近的光谱强反射特征。采集作物叶片的反射光信号,经转换、调制和放大后,利用灰度标准板拟合反射率,660nm和850nm拟合的校正模型R2分别为0.993、0.979。光源稳定性与抗干扰性测试结果显示,660nm和850nm光源的稳定性均方差分别为0.0079和0.0044,误差率分别为2.378%和1.223%;抗干扰性的均方差分别为0.0099和0.0187,误差率分别为2.000%和4.360%。通过叶绿素浸提溶液配比,设计了叶绿素梯度与双波长反射率的相关性试验,结果显示,660nm和850nm与叶绿素浓度相关系数分别为-0.919和0.272。660nm附近叶绿素对光谱有深吸收的特征,将其作为主要测试波长;850nm附近是叶片结构和以环境光学响应为主,反射光与叶绿素相关性不强,将其作为检测的参比波长。以田间玉米苗期植株为试验对象,利用双波长采集作物反射率,计算归一化植被指数(NDVI)、差值植被指数(DVI)、比值植被指数(RVI)和土壤调整型植被指数(SAVI),其与SPAD仪器测量值的相关系数r分别为0.892、0.846、0.867、0.883。基于NDVI、DVI、RVI和SAVI建立SPAD多元线性回归模型,其决定系数R2为0.831。利用该装置提供的模型嵌入功能导入诊断模型可直接输出叶绿素诊断结果,为作物叶绿素含量快速检测提供支持。 展开更多
关键词 叶绿素含量 光学检测 主动光源 植被指数 光谱分析
下载PDF
冬小麦苗期叶绿素含量检测光谱学参数寻优 被引量:21
7
作者 毛博慧 李民赞 +3 位作者 孙红 刘豪杰 张俊逸 Zhang Qin 《农业工程学报》 EI CAS CSCD 北大核心 2017年第S1期164-169,共6页
光谱分析技术是作物生长检测的主要手段,为了解决大田漫反射采集所造成的光谱基线漂移和偏移问题,研究采集了冬小麦冠层325~1 075 nm范围反射光谱,采用多元散射校正方法对小麦原始光谱进行预处理。采取遗传算法对光谱特征参数寻优并结... 光谱分析技术是作物生长检测的主要手段,为了解决大田漫反射采集所造成的光谱基线漂移和偏移问题,研究采集了冬小麦冠层325~1 075 nm范围反射光谱,采用多元散射校正方法对小麦原始光谱进行预处理。采取遗传算法对光谱特征参数寻优并结合相关分析结果,选取486、599、699和762 nm波长处反射率值并组合计算了RVI(ratio vegetation index),DVI(difference vegetation index),NDVI(normalized difference vegetation index)和SAVI(soil-adjusted vegetation index)共12个植被指数,分析了各植被指数与叶绿素含量值之间的相关关系,结果显示:DVI和SAVI可抑制苗期土壤背景干扰并对叶绿素含量响应较为敏感,与叶绿素含量相关性最优的参数分别为DVI(762,599)、SAVI(762,599)、DVI(762,699)和SAVI(762,699),与叶绿素含量的相关系数都达到0.6以上。基于相关性最优光谱植被指数DVI(762,699)和SAVI(762,599)利用最小二乘-支持向量回归建立冬小麦叶绿素含量预测模型,建模集决定系数为0.681,验证集决定系数为0.611。该模型可用于无损检测冬小麦苗期叶绿素含量,以期为后续施肥决策提供支持。 展开更多
关键词 叶绿素 光谱学 优化 冬小麦 多元散射校正 植被指数 冠层反射率 遗传算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部