期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
核方法在人脸识别中的应用 被引量:2
1
作者 朱美琳 刘向东 陈世福 《计算机科学》 CSCD 北大核心 2003年第5期82-84,共3页
Kernel function is the function which computes dot product in feature spaces. Both the SVMs and kernelPCA are kernel-based learning methods. In this paper, the SVMs and kernel PCA are used to tackle the face recogni-t... Kernel function is the function which computes dot product in feature spaces. Both the SVMs and kernelPCA are kernel-based learning methods. In this paper, the SVMs and kernel PCA are used to tackle the face recogni-tion problem. SVMs are classifiers which have demonstrated high generalization capabilities. Kernel PCA is a featureextraction technique which is proposed as a nonlinear extension of a PCA. We illustrate the potential of SVMs andkernel PCA on the Yale database and compare with a PCA based algorithm. The experiments indicate that SVMs andkernel PCA are superior to the PCA method. 展开更多
关键词 人脸识别 核方法 模式识别 人脸图像 几何特征 模板匹配 图像识别 图像处理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部