期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
用梅涅劳斯定理解立几题一例
1
作者 程新林 《中学教研(数学版)》 1989年第6期32-32,共1页
如图,平面四边形EFGH的顶点E、F、GH分别在空间四边形ABCD的边AB、BC、CD、DA上。若E、G分别是对边AB、CD中点,FC:FB=3:2,求HD:HA=? 解:在平面β中,延长FE,CA交于P,则P点为CA与平面EFGH的交点,在平面α中延长CA、GH交于P’,则P’也是直... 如图,平面四边形EFGH的顶点E、F、GH分别在空间四边形ABCD的边AB、BC、CD、DA上。若E、G分别是对边AB、CD中点,FC:FB=3:2,求HD:HA=? 解:在平面β中,延长FE,CA交于P,则P点为CA与平面EFGH的交点,在平面α中延长CA、GH交于P’,则P’也是直线CA与平面EFGH的交点。∴ P和P’点重合。在平面β中,由梅涅劳斯定理 FC/FB·EB/EA·PA/Pc=1. ∵FC:FB=3:2,EB=EA, ∴PA:PC=2:3。在平面α中,同理有GC/GD·HD/DA·PA/PC=1。∵GC=GD,PA:PC=2:3 ∴HD:HA=3:2。 展开更多
关键词 梅涅劳斯定理 空间四边形
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部