社交网络发展迅速,即时消息系统已成为人们日常生活中必不可少的沟通交流工具。在线群聊能使人们迅速交流生活、技术及工作等信息,但是由于群聊信息更新较快,大量的信息导致跟进群聊话题是困难的。传统的主题挖掘模型不能很好地适用于...社交网络发展迅速,即时消息系统已成为人们日常生活中必不可少的沟通交流工具。在线群聊能使人们迅速交流生活、技术及工作等信息,但是由于群聊信息更新较快,大量的信息导致跟进群聊话题是困难的。传统的主题挖掘模型不能很好地适用于群聊文本的挖掘。通过对群聊文本的特征进行分析,提出一种基于GRU和LDA的群聊会话主题挖掘(GLB-GCTM,GRU and LDA Based Group Chat Topic Mining)模型,解决了传统主题模型不能解决的词语顺序问题。首先,假定每个文档有一个基于高斯分布的主题向量,然后根据GRU原理产生每个词的隐含状态,根据当前词的隐含状态的伯努利分布确定当前词是否为停用词,以决定所使用的语言模型。该方法使用笔者加入的10个QQ群最近3个月的群聊数据集进行试验验证,结合对比实验评估标准,该模型能够有效识别出群聊文本中的主题。展开更多
模糊时间序列模型和季节模型都是基于时间序列的模型,为了探讨在时间序列表现出一定的周期性时,哪种模型的预测效果会更好,分别利用模糊时间序列模型和季节模型对南京某商场的客流量进行预测,计算并比较两种方法下的相对误差值和RMSE(Ro...模糊时间序列模型和季节模型都是基于时间序列的模型,为了探讨在时间序列表现出一定的周期性时,哪种模型的预测效果会更好,分别利用模糊时间序列模型和季节模型对南京某商场的客流量进行预测,计算并比较两种方法下的相对误差值和RMSE(Root Mean Square Error)值,发现季节模型的相对误差值图形的平滑度要优于模糊时间序列模型,季节模型的RMSE值小于模糊时间序列模型,这表明考虑到数据特征的模型有更好的预测结果。展开更多
文摘社交网络发展迅速,即时消息系统已成为人们日常生活中必不可少的沟通交流工具。在线群聊能使人们迅速交流生活、技术及工作等信息,但是由于群聊信息更新较快,大量的信息导致跟进群聊话题是困难的。传统的主题挖掘模型不能很好地适用于群聊文本的挖掘。通过对群聊文本的特征进行分析,提出一种基于GRU和LDA的群聊会话主题挖掘(GLB-GCTM,GRU and LDA Based Group Chat Topic Mining)模型,解决了传统主题模型不能解决的词语顺序问题。首先,假定每个文档有一个基于高斯分布的主题向量,然后根据GRU原理产生每个词的隐含状态,根据当前词的隐含状态的伯努利分布确定当前词是否为停用词,以决定所使用的语言模型。该方法使用笔者加入的10个QQ群最近3个月的群聊数据集进行试验验证,结合对比实验评估标准,该模型能够有效识别出群聊文本中的主题。
文摘模糊时间序列模型和季节模型都是基于时间序列的模型,为了探讨在时间序列表现出一定的周期性时,哪种模型的预测效果会更好,分别利用模糊时间序列模型和季节模型对南京某商场的客流量进行预测,计算并比较两种方法下的相对误差值和RMSE(Root Mean Square Error)值,发现季节模型的相对误差值图形的平滑度要优于模糊时间序列模型,季节模型的RMSE值小于模糊时间序列模型,这表明考虑到数据特征的模型有更好的预测结果。