期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
“计算光学成像技术与应用Ⅱ”专栏前言
1
作者 陈钱 左超 《红外与激光工程》 EI CSCD 北大核心 2024年第9期I0005-I0006,共2页
传统光学成像实质上是场景强度信号在空间维度上的直接均匀采样记录与再现的过程。在此过程中,成像的分辨率与信息量不可避免地受到光学衍射极限、探测离散器采样、成像系统空间带宽积等若干物理条件制约。如何突破这些物理限制,获得多... 传统光学成像实质上是场景强度信号在空间维度上的直接均匀采样记录与再现的过程。在此过程中,成像的分辨率与信息量不可避免地受到光学衍射极限、探测离散器采样、成像系统空间带宽积等若干物理条件制约。如何突破这些物理限制,获得多维度、高分辨、宽视场、高灵敏、快帧频的图像信息,是光学成像技术所追求的永恒目标。“计算光学成像”通过将前端物理域的光学调控与后端数字域的信息处理有机结合,为突破传统成像技术的诸多限制性因素提供了新思路。 展开更多
关键词 光学成像技术 空间带宽积 信息处理 条件制约 均匀采样 限制性因素 成像系统 数字域
下载PDF
远场合成孔径计算光学成像技术:文献综述与最新进展 被引量:4
2
作者 李晟 王博文 +6 位作者 管海涛 梁坤瑶 胡岩 邹燕 张许 陈钱 左超 《光电工程》 CAS CSCD 北大核心 2023年第10期1-27,共27页
传统光学成像实质上是目标场景的光强信号在空间维度上的直接均匀采样记录与再现的过程。因此,其成像分辨率与信息量不可避免地受到光学衍射极限、成像系统空间带宽积等若干物理条件制约。如何突破这些物理制约,获得更高分辨率、更宽广... 传统光学成像实质上是目标场景的光强信号在空间维度上的直接均匀采样记录与再现的过程。因此,其成像分辨率与信息量不可避免地受到光学衍射极限、成像系统空间带宽积等若干物理条件制约。如何突破这些物理制约,获得更高分辨率、更宽广的图像信息,一直是该领域的永恒课题。计算光学成像通过前端光学调控与后端信号处理相结合,为突破成像系统的衍射极限限制,实现超分辨成像提供了新思路。本文综述了基于计算光学合成孔径成像实现成像分辨率的提升以及空间带宽积拓展的相关研究工作,主要包括基于相干主动合成孔径成像与非相干被动合成孔径成像的基础理论及关键技术。本文进一步揭示了当前“非相干、无源被动、超衍射极限”成像的迫切需求及其现阶段存在的瓶颈问题,并展望了今后的研究方向以及解决这些问题可能的技术途径。 展开更多
关键词 光学合成孔径探测 计算成像 超分辨 傅里叶叠层 非相干合成孔径 远场成像
下载PDF
计算光学成像:何来,何处,何去,何从? 被引量:43
3
作者 左超 陈钱 《红外与激光工程》 EI CSCD 北大核心 2022年第2期150-330,共181页
计算光学成像是一种通过联合优化光学系统和信号处理以实现特定成像功能与特性的新兴研究领域。它并不是光学成像和数字图像处理的简单补充,而是前端(物理域)的光学调控与后端(数字域)信息处理的有机结合,通过对照明、成像系统进行光学... 计算光学成像是一种通过联合优化光学系统和信号处理以实现特定成像功能与特性的新兴研究领域。它并不是光学成像和数字图像处理的简单补充,而是前端(物理域)的光学调控与后端(数字域)信息处理的有机结合,通过对照明、成像系统进行光学编码与数学建模,以计算重构的方式获取图像与信息。这种新型的成像方式将有望突破传统光学成像技术对光学系统以及探测器制造工艺、工作条件、功耗成本等因素的限制,使其在功能(相位、光谱、偏振、光场、相干度、折射率、三维形貌、景深延拓,模糊复原,数字重聚焦,改变观测视角)、性能(空间分辨、时间分辨、光谱分辨、信息维度与探测灵敏度)、可靠性、可维护性等方面获得显著提高。现阶段,计算光学成像已发展为一门集几何光学、信息光学、计算光学、现代信号处理等理论于一体的新兴交叉技术研究领域,成为光学成像领域的国际研究重点和热点,代表了先进光学成像技术的未来发展方向。国内外众多高校与科研院所投身其中,使该领域全面进入了“百花齐放,百家争鸣”的繁荣发展局面。作为本期《红外与激光工程》——南京理工大学专刊“计算光学成像技术”专栏的首篇论文,本文概括性地综述了计算光学成像领域的历史沿革、发展现状、并展望其未来发展方向与所依赖的核心赋能技术,以求抛砖引玉。 展开更多
关键词 计算成像 计算摄像 光学成像 光学传感
下载PDF
分辨率、超分辨率与空间带宽积拓展——从计算光学成像角度的一些思考 被引量:8
4
作者 左超 陈钱 《中国光学(中英文)》 EI CAS CSCD 北大核心 2022年第6期1105-1166,共62页
传统光学成像实质上是场景强度信号在空间维度上的直接均匀采样记录与再现的过程。在此过程中,成像的分辨率与信息量不可避免地受到光学衍射极限、探测离散器采样、成像系统空间带宽积等若干物理条件制约。如何突破这些物理限制,获得分... 传统光学成像实质上是场景强度信号在空间维度上的直接均匀采样记录与再现的过程。在此过程中,成像的分辨率与信息量不可避免地受到光学衍射极限、探测离散器采样、成像系统空间带宽积等若干物理条件制约。如何突破这些物理限制,获得分辨率更高,视场更宽广的图像信息,是该领域的永恒课题。本文概括性地介绍了分辨率、超分辨率与空间带宽积拓展的相关基础理论,核心机理及其在计算光学成像中的若干实例。通过将这些具体个案置入“计算光学成像”这个更高维度的体系框架去分析与探讨,揭示了它们大多数都可以被理解为一种可称作“空间带宽积调控”策略,即利用成像系统的可用自由度,在成像系统有限空间带宽积的限制下,以最佳方式进行编解码和传递信息的过程,或者形象地说——“戴着脚镣跳舞”。这实质上是一种在物理限制下,在“得”与“失”之间所作出的符合规律的权衡与选择。本文的结论有望为设计和探索面向各类复杂现实成像应用的新型成像机理与方法提供有益启示。 展开更多
关键词 分辨率 超分辨率 衍射极限 亚像素 空间带宽积 计算光学 计算成像 计算摄像
下载PDF
深组织光片荧光显微成像研究进展(特邀) 被引量:1
5
作者 周笑 左超 刘永焘 《激光与光电子学进展》 CSCD 北大核心 2024年第2期162-177,共16页
随着生物医学研究对复杂组织结构和功能的深入探索,高分辨率、高信噪比的深组织成像技术变得愈加重要。传统的显微镜技术往往局限于二维、透明的生物薄样本的观测,这在很大程度上无法满足当前生物医学领域对三维深组织体成像的研究需求... 随着生物医学研究对复杂组织结构和功能的深入探索,高分辨率、高信噪比的深组织成像技术变得愈加重要。传统的显微镜技术往往局限于二维、透明的生物薄样本的观测,这在很大程度上无法满足当前生物医学领域对三维深组织体成像的研究需求。光片荧光显微镜凭借其低光损伤、高采集速率、大视场、体成像等优点被生物学家广泛使用。然而,生物组织固有的高散射特性仍然为深层成像带来了巨大的挑战。本文重点介绍了光片荧光显微成像技术在深组织成像领域的最新进展,特别是应对高散射样本挑战的解决策略,旨在为相关领域的研究人员提供有价值的参考,助力其对该前沿技术的最新进展和应用前景的理解。首先,阐述了光片荧光显微镜的基本原理和高散射吸收特性的形成原因及影响;然后,进一步阐明了增加组织穿透深度、应对光散射和吸收等问题的最新进展;最后,探讨了具有大穿透深度和强抗散射能力的光片荧光显微成像技术的发展前景以及潜在应用。 展开更多
关键词 荧光显微 光片照明 深组织成像 三维成像 光学散射
原文传递
光场表征及其分辨率提升技术:文献综述及最新进展(特邀)
6
作者 张润南 周宁 +3 位作者 周子豪 杜和恒 陈钱 左超 《红外与激光工程》 EI CSCD 北大核心 2024年第9期116-158,共43页
自高斯时代以来,成像系统的设计和开发便始终致力于透镜的持续迭代和优化,以收集来自物平面上某点向不同方向发射的光线,并尽可能完美地将其汇聚到像平面上的一个点。然而,成像传感器仅能捕捉并记录下光线的空间位置信息,导致角度信息... 自高斯时代以来,成像系统的设计和开发便始终致力于透镜的持续迭代和优化,以收集来自物平面上某点向不同方向发射的光线,并尽可能完美地将其汇聚到像平面上的一个点。然而,成像传感器仅能捕捉并记录下光线的空间位置信息,导致角度信息的丢失,并完全丧失了对三维场景的视角变换与深度感知能力。为了弥补这一缺陷,计算光场成像技术应运而生,它能够记录空间光辐射场的完整分布,联合记录空间位置和角度信息,突破了经典成像的局限性,正逐渐被应用于生命科学、国防安全、虚拟现实/增强现实、环境监测等领域,具有重要的学术研究价值和广阔的应用潜力。然而,光场成像技术仍然受到数字成像器件和图像传感器的联合制约,成像系统的有限空间带宽积致使光场成像在实际应用中往往需要在空间分辨率和角度分辨率之间做出权衡,导致难以达到传统成像技术的高空间分辨率。自光场成像技术诞生以来,如何赋予其更高的自由度,即在保持高分辨率成像的前提下,提高时间分辨率和角度分辨率,从而实现更清晰、更立体的成像性能是光场成像技术亟需解决的关键问题,也一直是该领域的研究热点。该综述全面回顾了光场成像技术的发展历程,阐述了全光函数和四维光场的基本概念,并总结了在时间、空间和角度这三个维度上实现高分辨率成像的关键方法,最后还对光场成像技术的未来发展趋势进行了展望。 展开更多
关键词 光场成像 计算成像 超分辨率成像 显微成像
下载PDF
计算光学相位成像:从干涉数字全息到光强衍射层析 被引量:2
7
作者 左超 陈钱 《科学通报》 EI CAS CSCD 北大核心 2023年第25期3240-3243,共4页
自400多年前问世以来,光学显微技术经历了不断地革新,已从Leeuwenhoek时代简单的单透镜装置发展成为一种极为重要且精密的观察与计量科学仪器,广泛地应用于生物医学、工业生产、材料化工与科学研究等领域.2014年,诺贝尔化学奖授予了超... 自400多年前问世以来,光学显微技术经历了不断地革新,已从Leeuwenhoek时代简单的单透镜装置发展成为一种极为重要且精密的观察与计量科学仪器,广泛地应用于生物医学、工业生产、材料化工与科学研究等领域.2014年,诺贝尔化学奖授予了超分辨率荧光显微技术[1].该技术突破了光学显微镜衍射极限的限制,将荧光显微成像的分辨率带入纳米时代,极大地推动了生命科学和基础医学的发展.除分辨率外,光学显微镜面临的另一大挑战是对比度.传统显微镜受强度(振幅)探测机理所限,对无色透明物体(如细胞)的成像依赖染色标记.而在研究活细胞的生理活动及其长时程动态过程时,无标记显微是一种最为理想的探测手段.1932年,Zernike发明了相差显微镜:通过空间滤波原理极大地提高了透明物体在镜下的可分辨性,Zernike也因此获得1953年的诺贝尔物理学奖[2].但时至今日,该技术仍局限于二维定性观测,无法实现三维定量测量,发展较荧光显微技术明显滞后. 展开更多
关键词 诺贝尔物理学奖 诺贝尔化学奖 衍射极限 荧光显微技术 数字全息 相位成像 相差显微镜 探测手段
原文传递
面向先进生物医学应用的光声显微成像术(特邀) 被引量:1
8
作者 马海钢 吴家辉 +5 位作者 朱亚辉 魏翔 于音什 任世利 陈钱 左超 《激光与光电子学进展》 CSCD 北大核心 2024年第6期105-134,共30页
光声显微成像(PAM)是一种具有无损、多功能、高分辨率等特点的生物医学成像技术,通过检测光声信号进行图像重建可实现高分辨率和高深度的结构和功能成像,在生命科学、基础医学和医疗诊断中发挥着越来越重要的作用。首先概述光声显微技... 光声显微成像(PAM)是一种具有无损、多功能、高分辨率等特点的生物医学成像技术,通过检测光声信号进行图像重建可实现高分辨率和高深度的结构和功能成像,在生命科学、基础医学和医疗诊断中发挥着越来越重要的作用。首先概述光声显微技术的发展背景和原理特点,然后对利用光学增强、声学增强、人工智能增强及光学与声学互补的光声显微成像术促进成像性能提升的方法进行论述,最后讨论当前光声显微技术在生物医学研究中的广泛应用,并对未来技术的发展趋势进行展望。 展开更多
关键词 生物医学影像 光声显微成像 高分辨 多功能 无损
原文传递
基于全局优化的实时高精度模型重建
9
作者 许新傲 李艺璇 +2 位作者 钱佳铭 冯世杰 左超 《液晶与显示》 CAS CSCD 北大核心 2023年第6期748-758,I0002,共12页
三维形貌测量在先进制造、航空航天、生物医学等领域发挥着重要的应用。凭借高精度、全视场、非接触等优点,条纹投影轮廓术是目前使用最广泛的一种光学三维测量手段。为了获得物体全局三维信息,通常需要将待测物置于转台之上,通过不断... 三维形貌测量在先进制造、航空航天、生物医学等领域发挥着重要的应用。凭借高精度、全视场、非接触等优点,条纹投影轮廓术是目前使用最广泛的一种光学三维测量手段。为了获得物体全局三维信息,通常需要将待测物置于转台之上,通过不断地扫描和拼接来获得物体的全局信息。然而,传统的扫描和拼接是以离线的方式进行的,导致整个三维模型的重建速度缓慢。现有的实时点云配准方法虽然能够有效提高点云扫描与拼接的速度,但实时点云拼接的精度依然受待测物的运动状态影响。本文针对上述问题进行优化改进,提出一种基于全局优化的实时高精度模型重建方法。首先,介绍了一种由粗配准到精配准的快速点云配准算法并提出了基于点云法向量约束的点云初始化算法,能够提升粗配准过程中点云初始位姿计算的稳定性与精度。其次,在精配准阶段引入了图优化算法以获得全局点云位姿的最优解,进一步提升了全局点云配准的精度。实验结果表明,所提方法相比于现有实时模型重建方法,能够实现更高精度且稳定的全局点云配准。特别地,针对动态场景中由于抖动等因素引起的被测物体速度突变等情况,本方法依然能够鲁棒地完成三维模型重建,全方位模型重建的精度达84μm。 展开更多
关键词 条纹投影轮廓术 图优化 实时 三维重建 点云配准
下载PDF
计算光学定量相位显微成像关键理论与技术
10
作者 陈钱 左超 +4 位作者 孙佳嵩 冯世杰 胡岩 张玉珍 李加基 《中国科技成果》 2021年第7期9-10,共2页
400多年来,光学显微镜经历了不断的革新,它们以更高的分辨率与成像质量成为人类探索微观世界不可或缺的重要工具.受强度(振幅)探测的传统光学显微成像机理的限制,对于无色透明物体(如细胞)依赖于染色或荧光标记等侵入式手段进行成像观测... 400多年来,光学显微镜经历了不断的革新,它们以更高的分辨率与成像质量成为人类探索微观世界不可或缺的重要工具.受强度(振幅)探测的传统光学显微成像机理的限制,对于无色透明物体(如细胞)依赖于染色或荧光标记等侵入式手段进行成像观测,而当前生物医学领域更为迫切的无标记、长时程动态过程(如活细胞的生理活动)的显微成像技术一直没有重大突破.2014年12月,即超分辨率荧光显微技术刚获诺贝尔化学奖之际,《自然·方法》(Nature Methods)发表展望称:"'定量相位成像技术'将是未来实现下一代无标记细胞成像的一项重大进展". 展开更多
关键词 诺贝尔化学奖 显微成像技术 细胞成像 无标记 侵入式 微观世界 成像质量 动态过程
原文传递
光场相干测量及其在计算成像中的应用 被引量:12
11
作者 张润南 蔡泽伟 +7 位作者 孙佳嵩 卢林芃 管海涛 胡岩 王博文 周宁 陈钱 左超 《激光与光电子学进展》 CSCD 北大核心 2021年第18期57-116,共60页
光场的相干性是定量衡量其产生显著的干涉现象所具备的重要物理属性。尽管高时空相干性的激光已成为传统干涉计量与全息成像等领域不可或缺的重要工具,但在众多新兴的计算成像领域(如计算摄像、计算显微成像),降低光源的相干性,即部分... 光场的相干性是定量衡量其产生显著的干涉现象所具备的重要物理属性。尽管高时空相干性的激光已成为传统干涉计量与全息成像等领域不可或缺的重要工具,但在众多新兴的计算成像领域(如计算摄像、计算显微成像),降低光源的相干性,即部分相干光源在获得高信噪比、高分辨率的图像信息方面具有独特优越性。因此,部分相干光场的“表征”与“重建”两方面问题的重要性日益凸显,亟需引入光场相干性理论及相干测量技术来回答计算成像中“光应该是什么”和“光实际是什么”的两大关键问题。在此背景下,系统地综述了光场相干性理论及相干测量技术,从经典的关联函数理论与相空间光学理论出发,阐述了对应的干涉相干测量法与非干涉相干恢复法的基本原理与典型光路结构;介绍了由相干测量所衍生出的若干计算成像新体制及其典型应用,如光场成像、非干涉相位复原、非相干全息术、非相干合成孔径、非相干断层成像等;论述了相干测量技术现阶段所面临的问题与挑战,并展望了其未来的发展趋势。 展开更多
关键词 成像系统 相干与统计光学 相干成像 部分相干成像 计算成像
原文传递
基于VCSEL投影阵列的散斑结构光三维成像技术及其传感器设计 被引量:3
12
作者 尹维 李明雨 +5 位作者 胡岩 冯世杰 张晓磊 王槐 陈钱 左超 《激光与光电子学进展》 CSCD 北大核心 2023年第8期232-242,共11页
散斑投影轮廓术通过投影单幅随机散斑图案编码场景的深度信息,利用散斑匹配技术建立立体图像间的全局对应关系,从而实现单帧3D重建。但由于被测物体表面的复杂反射特性和双相机间存在的视角差异,投影单幅散斑图案无法为整个测量空间中... 散斑投影轮廓术通过投影单幅随机散斑图案编码场景的深度信息,利用散斑匹配技术建立立体图像间的全局对应关系,从而实现单帧3D重建。但由于被测物体表面的复杂反射特性和双相机间存在的视角差异,投影单幅散斑图案无法为整个测量空间中每个像素编码全局唯一的特征,由此带来的误匹配问题导致测量精度较低,难以满足一些工业场景的高精度测量需求。提出一种基于垂直腔面发射激光器(VCSEL)投影阵列的散斑结构光三维成像技术及其传感器设计方法,所研制的三维结构光传感器集成了3个小型化散斑投影模组,投影一组空间位置不同的散斑图案,对被测场景的深度信息进行高效时空编码。提出一种由粗到精的时空散斑相关算法,以提升测量精度,重建复杂物体的精细轮廓。通过精度分析、三维模型扫描、小目标金属零件检测、复杂场景测量等实验证明,所提三维结构光传感器实现了远距离、大视场的高精度三维测量,可潜在应用于零件分拣、机器人码垛等工业场景。 展开更多
关键词 三维成像 立体视觉 光学成像 散斑投影
原文传递
基于数字孪生与迁移学习的结构光条纹图像分析(特邀)
13
作者 金子蘅 徐可 +4 位作者 张宁远 邓潇 左超 陈钱 冯世杰 《激光与光电子学进展》 CSCD 北大核心 2024年第2期347-357,共11页
近年来,深度学习技术广泛应用于计算光学三维成像的研究中。在条纹投影轮廓术中,通过训练深度学习网络,可从单幅条纹图像中恢复高精度的相位信息。然而,为了训练神经网络模型,通常需要耗费大量的时间成本和人力成本来采集训练数据集。... 近年来,深度学习技术广泛应用于计算光学三维成像的研究中。在条纹投影轮廓术中,通过训练深度学习网络,可从单幅条纹图像中恢复高精度的相位信息。然而,为了训练神经网络模型,通常需要耗费大量的时间成本和人力成本来采集训练数据集。为了解决该问题:首先,建立数字孪生条纹投影系统,并利用域随机化技术对虚拟照明光栅进行增强,使用计算机进行虚拟扫描,生成大量仿真光栅条纹图像;其次,利用仿真光栅图像对U-Net神经网络进行预训练;最后,引入迁移学习,采用少量真实光栅条纹图像对神经网络进行参数微调。由于U-Net的结构特殊性,提出并分析了“从左至右”“从上至下”“全局微调”等3种U-Net神经网络微调策略。实验结果表明,采用“从上至下”策略微调U-Net“瓶颈”网络模块的方法可获得最佳的迁移学习结果,神经网络的相位预测精度可得到显著提升。相比于使用大量真实数据进行训练,所述方法仅利用20%的数据就可训练神经网络获得高精度的相位重建结果。 展开更多
关键词 计算成像 条纹投影 深度学习 迁移学习 条纹分析
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部