The samples of brazed diamond grits with NiCr brazing alloy are prepared in vacuum and argon gas. The microstructures are analyzed with scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS...The samples of brazed diamond grits with NiCr brazing alloy are prepared in vacuum and argon gas. The microstructures are analyzed with scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction(XRD). The effects of brazing atmospheres on the as-brazed NiCr brazing alloy composite structures and interracial microstructure are studied between diamond grits and brazing alloy. Results show that: (1) There are different composite structures of as-brazed NiCr brazing alloy under different oxygen partial pressures in vacuum and argon gas. B203 exists on the surface of the brazed samples under argon gas furnace brazing. It indicates that oxygen plays an important role in the resultants of as-brazed NiCr brazing alloy during the brazing process. (2) There are different interfacial microstructures in different brazing atmospheres, but the main reaction product is chromium carbides. The chromium carbides in argon gas furnace brazing grow in a disordered form, but those in vacuum furnace brazing grow radiated. And the scale of grains in argon gas is smaller than those in vacuum.展开更多
基金Supported by the National Natural Science Foundation of China(50475040)the Aeronautical Science Foundation of China(2005ZH52060)the Natural Science Foundation of Jiangsu Province(BK2006723)~~
文摘The samples of brazed diamond grits with NiCr brazing alloy are prepared in vacuum and argon gas. The microstructures are analyzed with scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction(XRD). The effects of brazing atmospheres on the as-brazed NiCr brazing alloy composite structures and interracial microstructure are studied between diamond grits and brazing alloy. Results show that: (1) There are different composite structures of as-brazed NiCr brazing alloy under different oxygen partial pressures in vacuum and argon gas. B203 exists on the surface of the brazed samples under argon gas furnace brazing. It indicates that oxygen plays an important role in the resultants of as-brazed NiCr brazing alloy during the brazing process. (2) There are different interfacial microstructures in different brazing atmospheres, but the main reaction product is chromium carbides. The chromium carbides in argon gas furnace brazing grow in a disordered form, but those in vacuum furnace brazing grow radiated. And the scale of grains in argon gas is smaller than those in vacuum.