期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于人工蜂群优化的NSCT域图像模糊集增强方法 被引量:10
1
作者 吴一全 殷骏 戴一冕 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第1期59-65,共7页
针对实际应用中所采集的图像对比度低、边缘细节模糊的问题,提出了基于非下采样Contourlet变换(NSCT)、模糊集、人工蜂群(ABC)优化的自适应图像增强方法.首先对输入图像进行NSCT分解,得到一个低频子带和多个高频子带;然后依据贝叶斯萎... 针对实际应用中所采集的图像对比度低、边缘细节模糊的问题,提出了基于非下采样Contourlet变换(NSCT)、模糊集、人工蜂群(ABC)优化的自适应图像增强方法.首先对输入图像进行NSCT分解,得到一个低频子带和多个高频子带;然后依据贝叶斯萎缩阈值和非线性增益函数增强高频子带系数,采用模糊增强法增强低频子带系数,并利用ABC算法优化其中的模糊参数,以提高模糊增强法的自适应性;接着用低频子带图像的信息熵作为ABC算法的适应度函数,同时引入较劣种群随机初始化策略改进ABC算法,以缩短增强方法的运行时间.文中采用该增强方法对淡水鱼、铁轨表面、储粮害虫3类图像进行了增强实验,并依据主观视觉效果和对比度增益、清晰度增益、信息熵3个客观定量评价指标,对文中方法及其他3种同类增强方法进行了比较.结果表明,所提出的方法视觉效果最佳,能提高图像的对比度和清晰度,目标边缘光滑,且增加了图像的信息量,便于后续准确地进行图像检测与识别. 展开更多
关键词 图像增强 非下采样CONTOURLET变换 模糊集 人工蜂群算法 贝叶斯萎缩阈值 非线性增益 自适应增强
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部