为了研究VDMOS器件体二极管在反向恢复过程中的失效机理,详细分析了600 V VDMOS器件体二极管的工作过程,采用TCAD模拟软件研究了体二极管正向导通和反向恢复状态下的载流子密度分布及温度分布情况.模拟结果表明,VDMOS器件的体二极管在...为了研究VDMOS器件体二极管在反向恢复过程中的失效机理,详细分析了600 V VDMOS器件体二极管的工作过程,采用TCAD模拟软件研究了体二极管正向导通和反向恢复状态下的载流子密度分布及温度分布情况.模拟结果表明,VDMOS器件的体二极管在正向导通时,器件终端区同样会贮存大量的少数载流子,当体二极管从正向导通变为反向恢复状态时,贮存的少数载流子会以单股电流的形式被抽取,使得VDMOS器件中最靠近终端位置的原胞中的pbody区域温度升高,从而导致该区域寄生三极管基区电阻增大、发射结内建电势降低,最终触发寄生三极管开启,造成VDMOS器件失效.分析结果与实验结果一致.展开更多
文摘为了研究VDMOS器件体二极管在反向恢复过程中的失效机理,详细分析了600 V VDMOS器件体二极管的工作过程,采用TCAD模拟软件研究了体二极管正向导通和反向恢复状态下的载流子密度分布及温度分布情况.模拟结果表明,VDMOS器件的体二极管在正向导通时,器件终端区同样会贮存大量的少数载流子,当体二极管从正向导通变为反向恢复状态时,贮存的少数载流子会以单股电流的形式被抽取,使得VDMOS器件中最靠近终端位置的原胞中的pbody区域温度升高,从而导致该区域寄生三极管基区电阻增大、发射结内建电势降低,最终触发寄生三极管开启,造成VDMOS器件失效.分析结果与实验结果一致.