The photo-/electrocatalytic functionalization of quinoxalin-2(1H)-ones has emerged as a promising and powerful approach for post-synthetic modification of quinoxalin-2(1H)-ones.This review provides an overview of rece...The photo-/electrocatalytic functionalization of quinoxalin-2(1H)-ones has emerged as a promising and powerful approach for post-synthetic modification of quinoxalin-2(1H)-ones.This review provides an overview of recent developments in photo-/electrocatalytic functionalization of quinoxalin-2(1H)-ones including arylation,alkylation,fluoroalkylation,amination,phosphorylation,acylation,alkoxylation,thiolation,silylation,and annulation.The reaction scope and the related mechanism are also well discussed.展开更多
An environmentally friendly method for the synthesis of 3‐organylselenyl quinolones through theelectrochemical cross‐dehydrogenative coupling of 4‐quinolones and diorganyl diselenides wasdeveloped.As a green,atom e...An environmentally friendly method for the synthesis of 3‐organylselenyl quinolones through theelectrochemical cross‐dehydrogenative coupling of 4‐quinolones and diorganyl diselenides wasdeveloped.As a green,atom economic and self‐separating process,the present reaction requiresneither external oxidants nor electrolytes,forming a recyclable catalytic system.展开更多
文摘The photo-/electrocatalytic functionalization of quinoxalin-2(1H)-ones has emerged as a promising and powerful approach for post-synthetic modification of quinoxalin-2(1H)-ones.This review provides an overview of recent developments in photo-/electrocatalytic functionalization of quinoxalin-2(1H)-ones including arylation,alkylation,fluoroalkylation,amination,phosphorylation,acylation,alkoxylation,thiolation,silylation,and annulation.The reaction scope and the related mechanism are also well discussed.
文摘An environmentally friendly method for the synthesis of 3‐organylselenyl quinolones through theelectrochemical cross‐dehydrogenative coupling of 4‐quinolones and diorganyl diselenides wasdeveloped.As a green,atom economic and self‐separating process,the present reaction requiresneither external oxidants nor electrolytes,forming a recyclable catalytic system.