期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
爱国主义学思录
1
作者 徐求真 《求实》 CSSCI 北大核心 1995年第10期48-49,共2页
爱国主义学思录徐求真时下,爱国主义又成为人们谈论最多的一个话题。一些报刊刊载了不少这方面的好文章,激励人们久久燃起爱国情,为在新形势下深化爱国主义教育起到了积极的作用。爱国主义是人民对自己祖国山河、历史、文化、语言以... 爱国主义学思录徐求真时下,爱国主义又成为人们谈论最多的一个话题。一些报刊刊载了不少这方面的好文章,激励人们久久燃起爱国情,为在新形势下深化爱国主义教育起到了积极的作用。爱国主义是人民对自己祖国山河、历史、文化、语言以及传统美德所形成和巩固起来的深厚感... 展开更多
关键词 社会主义市场经济体制 爱国主义精神 民族主义 祖国 最大多数人民利益 新时期爱国主义 建设有中国特色的社会主义 建设社会主义 深化爱国主义教育 建设有中国特色社会主义
下载PDF
Transfer learning with deep sparse auto-encoder for speech emotion recognition
2
作者 Liang Zhenlin Liang Ruiyu +3 位作者 Tang Manting Xie Yue Zhao Li Wang Shijia 《Journal of Southeast University(English Edition)》 EI CAS 2019年第2期160-167,共8页
In order to improve the efficiency of speech emotion recognition across corpora,a speech emotion transfer learning method based on the deep sparse auto-encoder is proposed.The algorithm first reconstructs a small amou... In order to improve the efficiency of speech emotion recognition across corpora,a speech emotion transfer learning method based on the deep sparse auto-encoder is proposed.The algorithm first reconstructs a small amount of data in the target domain by training the deep sparse auto-encoder,so that the encoder can learn the low-dimensional structural representation of the target domain data.Then,the source domain data and the target domain data are coded by the trained deep sparse auto-encoder to obtain the reconstruction data of the low-dimensional structural representation close to the target domain.Finally,a part of the reconstructed tagged target domain data is mixed with the reconstructed source domain data to jointly train the classifier.This part of the target domain data is used to guide the source domain data.Experiments on the CASIA,SoutheastLab corpus show that the model recognition rate after a small amount of data transferred reached 89.2%and 72.4%on the DNN.Compared to the training results of the complete original corpus,it only decreased by 2%in the CASIA corpus,and only 3.4%in the SoutheastLab corpus.Experiments show that the algorithm can achieve the effect of labeling all data in the extreme case that the data set has only a small amount of data tagged. 展开更多
关键词 sparse auto-encoder transfer learning speech emotion recognition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部