随着社会迅速发展,空气污染对人类健康构成严重威胁。为有效预防,提出了基于频率域信息与双向长短期记忆(Frequency-Domain Information Bidirectional Long Short-Term Memory, FD-BiLSTM)神经网络的PM2.5浓度预测模型。利用离散余弦...随着社会迅速发展,空气污染对人类健康构成严重威胁。为有效预防,提出了基于频率域信息与双向长短期记忆(Frequency-Domain Information Bidirectional Long Short-Term Memory, FD-BiLSTM)神经网络的PM2.5浓度预测模型。利用离散余弦变换捕获频率特征,捕捉数据的周期性和趋势;通过BiLSTM模型预测结果,利用公开数据集对PM2.5浓度预测模型性能进行评估并验证。实验结果表明,多变量FD-BiLSTM模型能有效捕捉影响空气质量的复杂关系,可以实现更准确的PM2.5浓度预测。展开更多
文摘随着社会迅速发展,空气污染对人类健康构成严重威胁。为有效预防,提出了基于频率域信息与双向长短期记忆(Frequency-Domain Information Bidirectional Long Short-Term Memory, FD-BiLSTM)神经网络的PM2.5浓度预测模型。利用离散余弦变换捕获频率特征,捕捉数据的周期性和趋势;通过BiLSTM模型预测结果,利用公开数据集对PM2.5浓度预测模型性能进行评估并验证。实验结果表明,多变量FD-BiLSTM模型能有效捕捉影响空气质量的复杂关系,可以实现更准确的PM2.5浓度预测。