期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多尺度小波池化协方差网络:对噪声鲁棒的病理学图像分类算法
1
作者 张学顶 张术昌 +1 位作者 王红霞 王亚东 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第4期538-552,共15页
将基于深度学习的图像分类方法用于辅助病理学诊断优势突出,但获取病理学切片过程中产生的噪声会影响网络的泛化性能,进而降低分类算法的准确率.针对该问题,提出了一种鲁棒的病理学图像分类算法——多尺度小波池化协方差(multi-scale wa... 将基于深度学习的图像分类方法用于辅助病理学诊断优势突出,但获取病理学切片过程中产生的噪声会影响网络的泛化性能,进而降低分类算法的准确率.针对该问题,提出了一种鲁棒的病理学图像分类算法——多尺度小波池化协方差(multi-scale wavelet pooling covariance,MWPC)网络.MWPC网络主要由小波池化层、复合卷积层、多尺度特征融合和协方差特征提取层4个核心模块构成,其中小波池化层在抑制噪声影响的同时,保护了有效特征不受损失.多尺度特征融合将浅层特征与深层特征结合,使深层特征能够保留更多图像细节.协方差特征提取层可以获取图像的高阶统计特征,提高网络的泛化性能.在病理图像数据集上的测试结果表明,MWPC网络针对组织病理学图像分块级别的五分类任务,在无噪声条件下准确率可以达到90.90%,比ResNet提高1.68%,比Inception-v3分类网络提高0.43%;在模拟椒盐噪声、高斯噪声和柯西噪声等条件下,其噪声鲁棒性能提升明显,且能够降低平均噪声误差.多种网络模块的消融实验结果表明,MWPC网络能够提高网络分类性能和噪声鲁棒性. 展开更多
关键词 病理学图像 噪声鲁棒 小波池化 多尺度特征融合 协方差特征
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部