为获取低剂量CT图像的优质重建,本文提出一种基于投影数据非单调性全变分恢复的低剂量CT重建方法.新方法首先通过非线性Anscombe变换将满足Poisson分布的投影数据转化为近似Gaussian分布,其后对变换后的Gaussian型数据进行非单调性全变...为获取低剂量CT图像的优质重建,本文提出一种基于投影数据非单调性全变分恢复的低剂量CT重建方法.新方法首先通过非线性Anscombe变换将满足Poisson分布的投影数据转化为近似Gaussian分布,其后对变换后的Gaussian型数据进行非单调性全变分最小化算法(Nonmonotone Total Variation Minimization,NTVM)滤波,最后对Anscombe逆变换数据实现传统的滤波反投影(Filtered Back Projection,FBP)CT重建.仿真和临床低剂量CT重建实验表明,本文方法在噪声清除、伪影抑制和缩短重建时间等方面均有上佳表现.展开更多
针对低剂量CT图像质量退化问题,提出了一种基于投影域数据恢复的低剂量CT优质重建方法。新方法首先通过非线性Anscombe变换将满足Poisson分布的投影域数据转化Gaussian型分布,然后利用针对Anscombe变换的Gaussian型数据进行自适应Block-...针对低剂量CT图像质量退化问题,提出了一种基于投影域数据恢复的低剂量CT优质重建方法。新方法首先通过非线性Anscombe变换将满足Poisson分布的投影域数据转化Gaussian型分布,然后利用针对Anscombe变换的Gaussian型数据进行自适应Block-Matchingand 3D filtering(BM3D)滤波,最后通过对Anscombe逆变换数据执行传统的滤波反投影(Filtered Back Projec-tion,FBP)CT重建。由于Anscombe变换数据的方差已知,且所用BM3D滤波无需人工设置滤波参数,使得方法可实现自适应低剂量CT图像重建。仿真和临床低剂量CT数据的实验表明,方法具有良好的重建鲁棒性,其重建图像的噪声和伪影可同时得到有效抑制。展开更多
Stanley Osher和Martin Burger提出的基于Bregman距离的迭代正则化全变分去噪算法运算速度较快,但是应用于图像去噪时,没有考虑不同区域的灰度分布特性,从而容易导致纹理等重要信息丢失或模糊的缺陷。针对这一现象,提出了一种基于自适...Stanley Osher和Martin Burger提出的基于Bregman距离的迭代正则化全变分去噪算法运算速度较快,但是应用于图像去噪时,没有考虑不同区域的灰度分布特性,从而容易导致纹理等重要信息丢失或模糊的缺陷。针对这一现象,提出了一种基于自适应正则化的全变分去噪算法。论文对Osher的去噪模型中的全局正则化参数进行改进,给出了一种根据图像中不同区域的灰度分布特性,自适应选取正则化参数的方法。该算法可以保留图像的边缘和纹理细节信息。实验结果证实了所提算法的有效性,其信噪比较原有方法至少提高1.0dB以上。展开更多
文摘为获取低剂量CT图像的优质重建,本文提出一种基于投影数据非单调性全变分恢复的低剂量CT重建方法.新方法首先通过非线性Anscombe变换将满足Poisson分布的投影数据转化为近似Gaussian分布,其后对变换后的Gaussian型数据进行非单调性全变分最小化算法(Nonmonotone Total Variation Minimization,NTVM)滤波,最后对Anscombe逆变换数据实现传统的滤波反投影(Filtered Back Projection,FBP)CT重建.仿真和临床低剂量CT重建实验表明,本文方法在噪声清除、伪影抑制和缩短重建时间等方面均有上佳表现.
文摘针对低剂量CT图像质量退化问题,提出了一种基于投影域数据恢复的低剂量CT优质重建方法。新方法首先通过非线性Anscombe变换将满足Poisson分布的投影域数据转化Gaussian型分布,然后利用针对Anscombe变换的Gaussian型数据进行自适应Block-Matchingand 3D filtering(BM3D)滤波,最后通过对Anscombe逆变换数据执行传统的滤波反投影(Filtered Back Projec-tion,FBP)CT重建。由于Anscombe变换数据的方差已知,且所用BM3D滤波无需人工设置滤波参数,使得方法可实现自适应低剂量CT图像重建。仿真和临床低剂量CT数据的实验表明,方法具有良好的重建鲁棒性,其重建图像的噪声和伪影可同时得到有效抑制。
文摘建立了一套针对由金属伪影造成的CT图像质量退化的恢复算法。利用Non-Local前置滤波(Non-Local Pre-filter,NL-PF)对原始CT图像进行全局滤波,从而有效地滤除原始图像中的噪声并对射线状金属伪影进行了平滑,其后配合最大互信息量分割算法(Mutual Information Maximized Segmentation,MIMS)从图像中分割出伪影成份,并利用其周围非伪影部分的像素对伪影类像素进行插值处理得到一个称之为"伪组织"类的图像。最后,通过融合"伪组织"图像的sinogram和原始CT图像的sinogram,得到校正的sinogram并采用滤波反投影重建算法完成金属伪影的CT校正图像。利用所提出的方法可以对含有金属伪影的CT图像进行有效伪影消除,其中射线状伪影消除效果显著。另外,此方法还可以锐化器官轮廓,避免了临床上由于金属伪影导致的放射治疗效果下降。实验表明,金属伪影消除算法可以有效地消除高密度物体造成的金属伪影,从而提高临床诊断和治疗的效果提供技术支持。