期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
肾细胞癌与乏脂肪肾血管平滑肌脂肪瘤的鉴别分类模型:基于随机投影的多分类器分层融合框架
1
作者
莫天澜
吴煜良
+1 位作者
杨蕊梦
甄鑫
《南方医科大学学报》
CAS
CSCD
北大核心
2022年第8期1174-1181,共8页
目的研究基于随机投影的多分类器分层融合的分类模型对良性肾小肿块乏脂肪肾血管平滑肌脂肪瘤(<4 cm)(AMLwvf)和恶性肾小肿块肾细胞癌(RCC)的鉴别能力。方法回顾性收集163例经病理证实存在肾小肿块的患者,其中118例为肾细胞癌,45例...
目的研究基于随机投影的多分类器分层融合的分类模型对良性肾小肿块乏脂肪肾血管平滑肌脂肪瘤(<4 cm)(AMLwvf)和恶性肾小肿块肾细胞癌(RCC)的鉴别能力。方法回顾性收集163例经病理证实存在肾小肿块的患者,其中118例为肾细胞癌,45例为乏脂肪肾血管平滑肌脂肪瘤,对平扫CT图像中病灶面积最大的代表性切片进行目标感兴趣区域(ROI)勾画,利用放射组学特征构建一个层次型的融合框架。在投影域水平上对同质分类器进行融合,然后在分类器水平上对融合结果进行进一步融合,最终得到基于随机投影的多分类器分层融合的AMLwvf和RCC鉴别分类模型。采用五折交叉验证方法和特异性(SPE)、灵敏度(SEN)、准确率(ACC)、ROC曲线下面积(AUC)评价AMLwvf与RCC鉴别分类模型的性能。将本研究所提模型与使用单一基分类器算法以及几种传统的集成模型对AMLwvf和RCC的鉴别分类能力进行定量比较,验证本研究所提鉴别模型的可行性和有效性。结果投影数设置为10时,本文提出的分层融合鉴别模型在所有指标上获得最好的结果。基于投影数为10的前提,五折交叉验证结果显示本研究所提出的基于多分类器分层融合的AMLwvf和RCC鉴别分类模型的SPE、SEN、ACC、AUC分别为:0.853、0.693、0.809、0.870。结论基于随机投影的多分类器集成分类系统构建的AMLwvf和RCC鉴别模型可以很好地对AMLwvf和RCC进行鉴别分类。同时与基于单一分类器算法以及其他多分类器集成系统构建的AMLwvf和RCC的鉴别模型相比,本文所提出鉴别模型在AMLwvf和RCC的鉴别分类任务中具有较大优势。
展开更多
关键词
多分类器
分层融合框架
随机投影
肾细胞癌
乏脂肪肾血管平滑肌脂肪瘤
下载PDF
职称材料
题名
肾细胞癌与乏脂肪肾血管平滑肌脂肪瘤的鉴别分类模型:基于随机投影的多分类器分层融合框架
1
作者
莫天澜
吴煜良
杨蕊梦
甄鑫
机构
南方医科大学附属东莞医院肿瘤科放疗中心
华南理工
大学
医学院广州第一人民
医院
放射科
南方医科大学
生物医学工程学院
出处
《南方医科大学学报》
CAS
CSCD
北大核心
2022年第8期1174-1181,共8页
基金
国家自然科学基金(81874216,81971574)
广东省自然科学基金资助项目(2018A030313282,2021A1515011350)
+1 种基金
广州市科技计划项目(201904010422,202002030268,202102010025)
广州市校(院)联合资助(登峰医院)市重点实验室“广州市分子影像与临床转化医学重点实验室”建设项目。
文摘
目的研究基于随机投影的多分类器分层融合的分类模型对良性肾小肿块乏脂肪肾血管平滑肌脂肪瘤(<4 cm)(AMLwvf)和恶性肾小肿块肾细胞癌(RCC)的鉴别能力。方法回顾性收集163例经病理证实存在肾小肿块的患者,其中118例为肾细胞癌,45例为乏脂肪肾血管平滑肌脂肪瘤,对平扫CT图像中病灶面积最大的代表性切片进行目标感兴趣区域(ROI)勾画,利用放射组学特征构建一个层次型的融合框架。在投影域水平上对同质分类器进行融合,然后在分类器水平上对融合结果进行进一步融合,最终得到基于随机投影的多分类器分层融合的AMLwvf和RCC鉴别分类模型。采用五折交叉验证方法和特异性(SPE)、灵敏度(SEN)、准确率(ACC)、ROC曲线下面积(AUC)评价AMLwvf与RCC鉴别分类模型的性能。将本研究所提模型与使用单一基分类器算法以及几种传统的集成模型对AMLwvf和RCC的鉴别分类能力进行定量比较,验证本研究所提鉴别模型的可行性和有效性。结果投影数设置为10时,本文提出的分层融合鉴别模型在所有指标上获得最好的结果。基于投影数为10的前提,五折交叉验证结果显示本研究所提出的基于多分类器分层融合的AMLwvf和RCC鉴别分类模型的SPE、SEN、ACC、AUC分别为:0.853、0.693、0.809、0.870。结论基于随机投影的多分类器集成分类系统构建的AMLwvf和RCC鉴别模型可以很好地对AMLwvf和RCC进行鉴别分类。同时与基于单一分类器算法以及其他多分类器集成系统构建的AMLwvf和RCC的鉴别模型相比,本文所提出鉴别模型在AMLwvf和RCC的鉴别分类任务中具有较大优势。
关键词
多分类器
分层融合框架
随机投影
肾细胞癌
乏脂肪肾血管平滑肌脂肪瘤
Keywords
multi-classifier
hierarchical fusion framework
random projection
renal cell carcinoma
renal angiomyolipoma without visible fat
分类号
R737.11 [医药卫生—肿瘤]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
肾细胞癌与乏脂肪肾血管平滑肌脂肪瘤的鉴别分类模型:基于随机投影的多分类器分层融合框架
莫天澜
吴煜良
杨蕊梦
甄鑫
《南方医科大学学报》
CAS
CSCD
北大核心
2022
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部