期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于可见-近红外光谱技术的蜜源快速识别方法
被引量:
20
1
作者
杨燕
聂鹏程
+1 位作者
杨海清
何勇
《农业工程学报》
EI
CAS
CSCD
北大核心
2010年第3期238-242,共5页
蜂蜜蜜源决定了蜂蜜的药用价值。为了实现快速无损识别蜂蜜蜜源,提出了基于可见-近红外光谱技术结合机器学习的方法来实现蜂蜜蜜源的快速无损识别。该研究采集来自4个蜜源共232份蜂蜜样本光谱数据,随机选取其中212个样本用来构建分类器...
蜂蜜蜜源决定了蜂蜜的药用价值。为了实现快速无损识别蜂蜜蜜源,提出了基于可见-近红外光谱技术结合机器学习的方法来实现蜂蜜蜜源的快速无损识别。该研究采集来自4个蜜源共232份蜂蜜样本光谱数据,随机选取其中212个样本用来构建分类器,剩余20个样本进行分类器泛化学习能力的检验评估。光谱数据预处理采用基线校正,数据标准化和平滑消除干扰和噪声。基于一对多分类规则,采用主成分分析结合贝叶斯线性判别构造线性多分类器,并就分类效果和泛化学习能力与前向神经网络器构成的非线性分类器进行比较。结果表明:基于主成分分析结合贝叶斯线性判别构造的多分类器分类正确率为91.95%,前向神经网络的分类正确率为100%。该研究也表明应用可见-近红外技术对蜂蜜蜜源进行快速分类是可行的。
展开更多
关键词
近红外光谱
模式识别
主成分分析
贝叶斯线性判别
蜜源
下载PDF
职称材料
题名
基于可见-近红外光谱技术的蜜源快速识别方法
被引量:
20
1
作者
杨燕
聂鹏程
杨海清
何勇
机构
浙江
大学
生物系统
工程
与食品科学
学院
广西师范
大学
数学科学
学院
南昌航天航空大学电子信息工程学院
浙江工业
大学
信息
工程
学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2010年第3期238-242,共5页
基金
国家高技术研究发展计划("863"计划)项目(2006AA10Z234)
公益性行业(农业)科研专项(200803037)
文摘
蜂蜜蜜源决定了蜂蜜的药用价值。为了实现快速无损识别蜂蜜蜜源,提出了基于可见-近红外光谱技术结合机器学习的方法来实现蜂蜜蜜源的快速无损识别。该研究采集来自4个蜜源共232份蜂蜜样本光谱数据,随机选取其中212个样本用来构建分类器,剩余20个样本进行分类器泛化学习能力的检验评估。光谱数据预处理采用基线校正,数据标准化和平滑消除干扰和噪声。基于一对多分类规则,采用主成分分析结合贝叶斯线性判别构造线性多分类器,并就分类效果和泛化学习能力与前向神经网络器构成的非线性分类器进行比较。结果表明:基于主成分分析结合贝叶斯线性判别构造的多分类器分类正确率为91.95%,前向神经网络的分类正确率为100%。该研究也表明应用可见-近红外技术对蜂蜜蜜源进行快速分类是可行的。
关键词
近红外光谱
模式识别
主成分分析
贝叶斯线性判别
蜜源
Keywords
near infrared spectroscopy
pattern recognition
principal component analysis
Bayesian linear discriminant
nectar
分类号
O43 [机械工程—光学工程]
TP3 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于可见-近红外光谱技术的蜜源快速识别方法
杨燕
聂鹏程
杨海清
何勇
《农业工程学报》
EI
CAS
CSCD
北大核心
2010
20
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部