期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
印制电路板用UV光固化三防漆清洁生产工艺优化研究
1
作者 左少辉 《信息记录材料》 2024年第12期23-25,共3页
本文针对印制电路板(printed circuit board, PCB)上光敏聚合物曝光(ultraviolet, UV)光固化三防漆的清洁生产工艺进行优化,以提高生产效率、降低成本,并强化产品的环保性和质量。首先,需要确保其所使用的三防漆材料符合相关环保标准、... 本文针对印制电路板(printed circuit board, PCB)上光敏聚合物曝光(ultraviolet, UV)光固化三防漆的清洁生产工艺进行优化,以提高生产效率、降低成本,并强化产品的环保性和质量。首先,需要确保其所使用的三防漆材料符合相关环保标准、确定最佳的原材料配比。其次,优化UV光固化设备参数。最后,智能调节催化剂使用量,以实现印制电路板用UV光固化三防漆清洁生产工艺的全面优化。实验结果表明:本设计方法带来了显著的环境效益,降低了环境污染风险,具有更大的应用价值。 展开更多
关键词 印制电路板 光敏聚合物曝光(UV)光固化三防漆 清洁生产工艺
下载PDF
Transformer-based correction scheme for short-term bus load prediction in holidays
2
作者 Tang Ningkai Lu Jixiang +3 位作者 Chen Tianyu Shu Jiao Chang Li Chen Tao 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期304-312,共9页
To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduc... To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduce complexity and capture inherent characteristics more effectively.Gated residual connections are then employed to selectively propagate salient features across layers,while an attention mechanism focuses on identifying prominent patterns in multivariate time-series data.Ultimately,a pre-trained structure is incorporated to reduce computational complexity.Experimental results based on extensive data show that the proposed scheme achieves improved prediction accuracy over comparative algorithms by at least 32.00%consistently across all buses evaluated,and the fitting effect of holiday load curves is outstanding.Meanwhile,the pre-trained structure drastically reduces the training time of the proposed algorithm by more than 65.75%.The proposed scheme can efficiently predict bus load results while enhancing robustness for holiday predictions,making it better adapted to real-world prediction scenarios. 展开更多
关键词 short-term bus load prediction Transformer network holiday load pre-training model load clustering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部