期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
工业领域电力需求侧可调节负荷潜力分析 被引量:5
1
作者 程元 饶尧 丁胜 《能源工程》 2023年第1期72-78,共7页
工业领域用电占比高,可调节负荷潜力大,充分挖掘工业领域可调节负荷资源,可有效促进新能源消纳和保障电网供需平衡。通过现场调研与理论研究相结合的方法,重点分析了某市工业领域水泥、玻璃、钢铁、设备制造及纺织等行业的用电负荷特点... 工业领域用电占比高,可调节负荷潜力大,充分挖掘工业领域可调节负荷资源,可有效促进新能源消纳和保障电网供需平衡。通过现场调研与理论研究相结合的方法,重点分析了某市工业领域水泥、玻璃、钢铁、设备制造及纺织等行业的用电负荷特点、调节能力及理论潜力。研究发现,该市工业用户30分钟内可调负荷、日前可调负荷潜力值分别为10.0392、58.1570万kW,从行业来看,设备制造行业占比最高,30分钟内可调负荷、日前可调负荷占比分别达75.4%、65.1%。研究结论可为电力公司有针对性地开展需求侧管理工作提供支撑,也可为政府制定需求响应、有序用电等需求侧管理政策提供参考依据。 展开更多
关键词 电力需求侧 可调节负荷 需求响应 有序用电
下载PDF
Transformer-based correction scheme for short-term bus load prediction in holidays
2
作者 Tang Ningkai Lu Jixiang +3 位作者 Chen Tianyu Shu Jiao Chang Li Chen Tao 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期304-312,共9页
To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduc... To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduce complexity and capture inherent characteristics more effectively.Gated residual connections are then employed to selectively propagate salient features across layers,while an attention mechanism focuses on identifying prominent patterns in multivariate time-series data.Ultimately,a pre-trained structure is incorporated to reduce computational complexity.Experimental results based on extensive data show that the proposed scheme achieves improved prediction accuracy over comparative algorithms by at least 32.00%consistently across all buses evaluated,and the fitting effect of holiday load curves is outstanding.Meanwhile,the pre-trained structure drastically reduces the training time of the proposed algorithm by more than 65.75%.The proposed scheme can efficiently predict bus load results while enhancing robustness for holiday predictions,making it better adapted to real-world prediction scenarios. 展开更多
关键词 short-term bus load prediction Transformer network holiday load pre-training model load clustering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部