期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于PSO优化的移动位置隐私保护算法 被引量:19
1
作者 李婕 白志宏 +2 位作者 于瑞云 崔亚盟 王兴伟 《计算机学报》 EI CSCD 北大核心 2018年第5期1037-1051,共15页
在这个移动互联网技术和大数据技术快速发展的时代,基于位置的服务使移动用户的位置信息数据化,给人们的生活带来极大便利的同时也威胁到了移动用户的位置隐私.传统的位置隐私保护方法只对当前位置和当前时刻的隐私进行考虑,这类方法既... 在这个移动互联网技术和大数据技术快速发展的时代,基于位置的服务使移动用户的位置信息数据化,给人们的生活带来极大便利的同时也威胁到了移动用户的位置隐私.传统的位置隐私保护方法只对当前位置和当前时刻的隐私进行考虑,这类方法既没有严格的隐私度量标准,又无法应对在攻击者得到用户的历史时序位置信息的情况下进行概率推测攻击.针对传统方法的这些问题,该文基于概率推测模型设计了一种位置隐私保护算法MaskK,首先通过隐马尔可夫模型(HMM)对用户的移动状态和位置发布情况进行建模,计算出用户移动位置的抑制发布概率向量,然后利用该概率向量中的概率对用户的部分位置进行抑制发布,使攻击者通过搜集到的用户历史位置数据得到的信息量尽可能的小,并引入k-匿名思想和粒子群优化算法(PSO)进行优化,进一步提高算法的运行效率和服务质量.该文通过真实数据对提出的算法进行了科学的实验,验证了MaskK在隐私保护效果、服务质量和运行效率上的优越性. 展开更多
关键词 位置隐私保护 K-匿名 粒子群优化算法 隐马尔可夫模型 移动通信网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部