期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Establishing and validating a spotted tongue recognition and extraction model based on multiscale convolutional neural network 被引量:7
1
作者 PENG Chengdong WANG Li +3 位作者 JIANG Dongmei YANG Nuo CHEN Renming DONG Changwu 《Digital Chinese Medicine》 2022年第1期49-58,共10页
Objective In tongue diagnosis,the location,color,and distribution of spots can be used to speculate on the viscera and severity of the heat evil.This work focuses on the image analysis method of artificial intelligenc... Objective In tongue diagnosis,the location,color,and distribution of spots can be used to speculate on the viscera and severity of the heat evil.This work focuses on the image analysis method of artificial intelligence(AI)to study the spotted tongue recognition of traditional Chinese medicine(TCM).Methods A model of spotted tongue recognition and extraction is designed,which is based on the principle of image deep learning and instance segmentation.This model includes multiscale feature map generation,region proposal searching,and target region recognition.Firstly,deep convolution network is used to build multiscale low-and high-abstraction feature maps after which,target candidate box generation algorithm and selection strategy are used to select high-quality target candidate regions.Finally,classification network is used for classifying target regions and calculating target region pixels.As a result,the region segmentation of spotted tongue is obtained.Under non-standard illumination conditions,various tongue images were taken by mobile phones,and experiments were conducted.Results The spotted tongue recognition achieved an area under curve(AUC)of 92.40%,an accuracy of 84.30%with a sensitivity of 88.20%,a specificity of 94.19%,a recall of 88.20%,a regional pixel accuracy index pixel accuracy(PA)of 73.00%,a mean pixel accuracy(m PA)of73.00%,an intersection over union(Io U)of 60.00%,and a mean intersection over union(mIo U)of 56.00%.Conclusion The results of the study verify that the model is suitable for the application of the TCM tongue diagnosis system.Spotted tongue recognition via multiscale convolutional neural network(CNN)would help to improve spot classification and the accurate extraction of pixels of spot area as well as provide a practical method for intelligent tongue diagnosis of TCM. 展开更多
关键词 Spotted tongue recognition and extraction The feature of tongue Instance segmentation Multiscale convolutional neural network(CNN) Tongue diagnosis system Artificial intelligence(AI)
下载PDF
基于Multiscale CNN的齿痕舌识别研究
2
作者 蒋冬梅 杨诺 +1 位作者 王勇 彭成东 《安徽水利水电职业技术学院学报》 2023年第1期48-51,共4页
齿痕舌是中医舌诊的一个重要指标。建立的多尺度卷积神经网络由多尺度特征图生成、候选区域搜索、目标区域识别模块组成,实现对轻、中、重3种程度齿痕实例分割与目标区域提取。实验结果表明,齿痕实例分割的精确度高,适用于中医智能舌诊... 齿痕舌是中医舌诊的一个重要指标。建立的多尺度卷积神经网络由多尺度特征图生成、候选区域搜索、目标区域识别模块组成,实现对轻、中、重3种程度齿痕实例分割与目标区域提取。实验结果表明,齿痕实例分割的精确度高,适用于中医智能舌诊系统应用。 展开更多
关键词 齿痕识别 实例分割 语义分割 卷积神经网络 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部